MATH GR6403 - Modern Geometry Notes

Michael Tulskikh

Last Modified: May 2, 2024

Contents

1 Preliminaries

1.1 Immersions and Submersions

Let $f : M \to N$ be a smooth map between two manifolds. Then consider the differential map $df_p : T_pM \to$ $T_{f(p)}N$.

Definition 1.1. Given a map f as defined above, we say that f is a immersion (submersion) if the differential df_p is an injective (surjective) linear map. This is also equivalent to the following:

Given $p \in M$, f is an immersion (submersion) at p if there is a chart (U, ϕ) for M around p and a chart (V, ψ) for N around $f(p)$ such that:

- (i) $f(U) \subset V$
- (ii) the composition $g = \psi \circ f \circ \phi^{-1} : \phi(U) \to \psi(V)$ is an immersion (submersion) at $\phi(p)$

Definition 1.2. Let $f : M \to N$ be a smooth map between manifolds of dimension m and n respectively.

If f is an immersion (submersion) at $p \in M$, so that $m \leq n$ ($m \geq n$), there is a chart (U, ϕ) for M around p, and a chart (V, ψ) for N around $f(p)$ such that:

- 1. $\phi(p) = 0 \in \mathbb{R}^m$
- 2. $\psi(f(p)) = 0 \in \mathbb{R}^n$
- 3. The composition $\psi \circ f \circ \phi^{-1}$ is the restriction of the canonical immersion (submersion) to $\phi(U) \subset \mathbb{R}^m$

Additionally, if f is both an immersion and a submersion at p, then we call f a local diffeomorphism at p.

Definition 1.3. Let $f : M \to N$ be a smooth map between smooth manifolds. We say that f is an embedding if:

1. f is an immersion

2. $f: M \to f(M)$ is a homeomorphism onto $f(M)$, where $f(M)$ is equipped with the subspace topology. In this case, we say that $f(M)$ is a submanifold of N.

1.2 Connections on a Vector Bundle

If E, F are smooth vector bundles over M, and $\phi: C^{\infty}(M, E) \to C^{\infty}(M, F)$ is a $C^{\infty}(M)$ linear map, then $\phi \in C^{\infty}(M, E^* \otimes F)$. For $s \in C^{\infty}(M, E)$, $\phi(s) \in C^{\infty}(M, F)$, and $\forall p \in M$, $\phi(p)(s) \in F$.

That is to say that $\phi(p) \in (E^* \otimes F)_p = \text{Hom}_{\mathbb{R}}(E_p, F_p)$.

Let $\pi : M \to E$ be a C^{∞} vector bundle over M. A connection ∇ on E is an R-bilinear map:

$$
\nabla : \mathfrak{X}(M) \times C^{\infty}(M, E) \to C^{\infty}(M, E)
$$

which sends $(x, s) \mapsto \nabla_X s$ such that for all $f \in C^{\infty}(M)$, $X \in \mathfrak{X}(M)$, and $s \in C^{\infty}(M, E)$, we have:

(i)
$$
\nabla_{fX} s = f \nabla_{X} s
$$

(ii) $\nabla_{X}(fs) = X(f)s + f \nabla_{X} s$

Notice that for a fixed s:

$$
\nabla_z s \in C^\infty(M, T^*M \otimes E) = \Omega^1(M, E)
$$

We will use the notation that $\Omega^k(M,E) := C^\infty(M, \Lambda^k T^*M \otimes E)$ to denote the space of E-valued k-forms on M. On the other hand, for a fixed $X, \nabla_X : C^\infty(M, E) \to C^\infty(M, E)$ is a derivation.

Alternatively, a connection ∇ on E can be viewed as an R-linear map $\nabla : \Omega^0(M, E) \to \Omega^1(M, E)$ that obeys the rule $\nabla (fs) = df \otimes s + f \nabla s$

The space of all connections on E is an infinite dimensional affine space whose associated vector space is $\Omega^1(M,\mathrm{End}(E))$

1.3 Pullback Bundles

Let $f : M \to N$ be a smooth map, and let $\pi : E \to N$ be a smooth vector bundle on N. Then we can define a bundle $\tilde{\pi}: f^*E \to M$ called the *pullback bundle* in the following way. As a set,

$$
f^*E = \bigcup_{p \in M} E_{f(p)} = \{(p, q) \in M \times E \mid f(p) = \pi(q)\}
$$

We can define a smooth structure on this in the following way. If $s : N \to E$ is a smooth section of E, then $f^*s: M \to f^*E$ given by:

$$
f^*s(p) = s(f(p)) \in E_{f(p)} =: (f^*E)_p
$$

is a smooth section of f^*E . If e_1, \ldots, e_r are a smooth frame for $E|_U$, where U is an open set in N, then f^*e_1,\ldots,f^*e_r is a smooth frame for $f^*E|_{f^{-1}(U)}$. A section $s:f^{-1}(U)\to f^*E|_{f^{-1}(U)}$ is smooth if and only if we can write:

$$
s = \sum_{j=1}^{r} a_j f^* e_j
$$

where the a_j are smooth functions of $f^{-1}(U)$. We then also have a pullback map

$$
f^*: C^\infty(N, E) \to C^\infty(M, f^*E)
$$

Suppose that $\{U \mid \alpha \in I\}$ is an open cover of N with local trivializations $h_{\alpha}: \pi^{-1}(U_{\alpha}) \to U_{\alpha} \times \mathbb{R}^r$, and define the transition functions $t_{\alpha\beta}: U_{\alpha}\cap U_{\beta}\to GL(r,\mathbb{R})$ as before. Then,

$$
f^*t_{\alpha\beta} = t_{\alpha\beta} \circ f : f^{-1}(U_\alpha \cap U_\beta) = f^{-1}(U_\alpha) \cap f^{-1}(U_\beta) \to GL(r, \mathbb{R})
$$

are the transition functions for the pullback bundle f^*E .

1.4 Pullback Connection

Let $f : M \to N$ be a smooth map, and let $\pi : E \to N$ be a smooth vector bundle with a connection ∇ . Then there is a unique connection $f^*\nabla$ on f^*E called the *pullback connection* such that:

$$
(f^*\nabla)(f^*s) = f^*(\nabla s)
$$

for a smooth section $s: N \to E$.

In other words, if $s : N \to E$ is a smooth section, and $p \in M$, $X \in T_pM$, then

$$
(f^*\nabla)_X (f^*s) = f^* \left(\nabla_{df_p(X)} s\right)
$$

In terms of local coordinates, if e_1, \ldots, e_r is a smooth frame for $E|_U$, then f^*e_1, \ldots, f^*e_r is a smooth frame for $f^*E|_{f^{-1}(U)}$. On U, we know that:

$$
\nabla e_j = \sum_{k=1}^r \omega_j^k \otimes e_k
$$

Then

$$
(f^*\nabla)(f^*e_j) = f^*(\nabla e_j) = \sum_{k=1}^r f^*(\omega_j^k) \otimes f^*e_k
$$

Therefore, if $\{\omega_{\alpha} \in \Omega_1(U_{\alpha}, \mathfrak{gl}(r, \mathbb{R})) \mid \alpha \in I\}$ are connection 1-forms of the connection ∇ on $E \to N$, then ${f^*\omega_\alpha \in \Omega_1(f^{-1}(U_\alpha), \mathfrak{gl}(r,\mathbb{R})) \mid \alpha \in I}$ are the connection 1-forms of the pullback connection $f^*\nabla$ on $f^*E \to M$.

An important special case of this is if $E = TN$, with $f^*TN = TM$.

We then get a map $f_* : \mathfrak{X}(M) \to C^\infty(M, f^*TN) \leftarrow f^* \mathfrak{X}(M)$

With this map, we can say that X and Y are f-related if and only if $f^*Y = f_*X$ in $C^\infty(M, f^*TN)$.

And then given a connection ∇ on a vector bundle $\pi : E \to M$, we define for all $X, Y \in \mathfrak{X}(M)$:

$$
R_{\nabla}(X,Y)(s) = \nabla_X \nabla_Y s - \nabla_Y \nabla_X s - \nabla_{[X,Y]} s
$$

Thus $R_{\nabla} \in \Omega^2(M, \text{End}(E))$ And note that $R_{f^*\nabla} = f^*(R_{\nabla})$

1.5 Derivative of Metric

Consider a Riemannian manifold (M, g) with the metric g_{ij} defined such that $g_{ij} = e_i \cdot e_j$. We can compute its derivative in the following way:

$$
\frac{\partial g_{ij}}{\partial x^k} = \frac{\partial}{\partial x^k} g_{ij}
$$

= $\frac{\partial}{\partial x^k} (e_i \cdot e_j)$
= $\frac{\partial e_i}{\partial x^k} \cdot e_j + e_i \cdot \frac{\partial e_j}{\partial x^k}$
= $\Gamma_{ik}^{\lambda} e_{\lambda} \cdot e_j + e_i \cdot \Gamma_{jk}^{\lambda} e_{\lambda}$
= $\Gamma_{ik}^{\lambda} g_{\lambda j} + \Gamma_{jk}^{\lambda} g_{i\lambda}$

So we have the following result:

$$
\partial_k g_{ij} = \Gamma_{ik}^{\lambda} g_{\lambda j} + \Gamma_{jk}^{\lambda} g_{i\lambda}
$$

1.6 Musical Isomorphisms

Let (M, g) be a Riemannian manifold, and suppose we choose coordinates (x_1, \ldots, x_n) around $p \in M$ so that $\left(\frac{\partial}{\partial x^1},\ldots,\frac{\partial}{\partial x^n}\right)$ is an orthonormal frame for T_pM . Then (dx^1,\ldots, dx^n) is the dual frame for T_p^*M .

Then we can define the *musical isomorphism* operators \flat and \sharp in the following way:

$$
\begin{array}{ccc}\nb: T_pM \rightarrow T_p^*M & & \n& X \mapsto g_{ij}X^idx^j & & \n& \omega \mapsto g^{ij}\omega_i\frac{\partial}{\partial x^j} \\
\mapsto X_jdx^j & & \omega \mapsto \omega^i\frac{\partial}{\partial x^i}\n\end{array}
$$

Which gives us the relation $\langle \omega^{\sharp}, Y \rangle = \omega(Y)$

1.7 Gradient, Divergence, and Laplacian

Let (M, g) be a Riemannian manifold, and let ∇ be the Levi-Civita connection on (M, g) . Given a vector field $Y \in \mathfrak{X}(M)$, we can write $Y = Y^i \frac{\partial}{\partial x^i}$ in a coordinate neighborhood U with local coordinates (x_1, \ldots, x_n) , where $Y^i \in C^\infty(M)$

Then, we have that:

$$
\nabla_i Y = \nabla_i Y^j \partial_j
$$

= $\frac{\partial Y^j}{\partial x^i} \partial_j + Y^j \nabla_i \partial_j$
= $\frac{\partial Y^j}{\partial x^i} \partial_j + Y^j \Gamma^k_{ij} \partial_k$
= $\frac{\partial Y^j}{\partial x^i} \partial_j + Y^k \Gamma^j_{ik} \partial_j$
= $\frac{\partial Y^j}{\partial x^i} \partial_j + \Gamma^j_{ik} Y^k \partial_j$

Which implies that:

$$
\nabla_i Y^j = \frac{\partial Y^j}{\partial x^i} + \Gamma^j_{ik} Y^k
$$

1.7.1 Gradient

Proposition 1.4. Given a Riemannian manifold (M, g) , the gradient of a smooth function $f \in C^{\infty}(M)$ is given by:

grad
$$
f = g^{ij} \frac{\partial f}{\partial x_j} \frac{\partial}{\partial x_i}
$$

Proof:

For any smooth function $f \in C^{\infty}(M)$, and $X \in \mathfrak{X}(M)$ we can define a smooth vector field grad $f \in \mathfrak{X}(M)$ by the rule:

$$
\langle \operatorname{grad} f, X \rangle = df(X)
$$

Note that this makes sense if we consider what both the gradient and derivative operators do in \mathbb{R}^n .

In local coordinates, we can write:

$$
\nabla f = \left\langle \frac{\partial f}{\partial x^1}, \dots, \frac{\partial f}{\partial x^n} \right\rangle \in \mathfrak{X}(M)
$$

And also:

$$
df = \frac{\partial f}{\partial x^i} dx^i \in \Omega^1(M)
$$

In this form, we can see that the components of both df and ∇f are the same.

So taking inspiration from Section [1.6](#page-4-1) on musical isomorphisms, we can see that the definition can be rewritten as:

$$
\langle df^{\sharp}, X \rangle = df(X)
$$

Meaning that indeed the gradient and differential are related via $df^\sharp=\operatorname{grad} f$

$$
df^{\sharp} = \text{grad } f = g^{ij} \frac{\partial f}{\partial x^{i}} \frac{\partial}{\partial x^{j}}
$$

Therefore, we have shown:

$$
\operatorname{grad} f = g^{ij} \frac{\partial f}{\partial x^i} \frac{\partial}{\partial x^j} \tag{1.1}
$$

 \Box

1.7.2 Divergence

Now, let's consider the divergence of a vector field Y :

Proposition 1.5. Given a vector field $Y \in \mathfrak{X}(M)$, the divergence of Y is given by:

$$
\operatorname{div} Y = \frac{1}{\sqrt{\det(g)}} \frac{\partial}{\partial x^i} \left(\sqrt{\det(g)} Y^i \right)
$$

Proof:

$$
div(Y) = \nabla_i Y^i
$$

$$
= \frac{\partial Y^i}{\partial x^i} + \Gamma^i_{ik} Y^k
$$

Now let us calculate Γ_{ik}^i in local coordinates:

$$
\Gamma_{ik}^{i} = \frac{1}{2} g^{ij} \left(\partial_{i} g_{kj} + \partial_{k} g_{ji} - \partial_{j} g_{ik} \right)
$$

= $\frac{1}{2} g^{ij} \partial_{k} g_{ij}$
= $\frac{1}{2}$ Tr $\left(g^{-1} \partial_{k} g \right)$
= $\frac{\partial}{\partial x^{k}} \log \left(\sqrt{\det(g)} \right)$
= $\frac{1}{\sqrt{\det(g)}} \frac{\partial}{\partial x^{k}} \sqrt{\det(g)}$

We can plug this back into the expression for divergence, to get:

$$
\operatorname{div} Y = \frac{\partial Y^i}{\partial x^i} + \frac{1}{\sqrt{\det(g)}} \frac{\partial}{\partial x^k} \left(\sqrt{\det(g)} \right) Y^k
$$

=
$$
\frac{1}{\sqrt{\det(g)}} \left(\sqrt{\det(g)} \frac{\partial Y^i}{\partial x^i} + \frac{\partial}{\partial x^i} \left(\sqrt{\det(g)} Y^i \right) \right)
$$

=
$$
\frac{1}{\sqrt{\det(g)}} \frac{\partial}{\partial x^i} \left(\sqrt{\det(g)} Y^i \right)
$$

So we arrive at the formula:

$$
\operatorname{div} Y = \frac{1}{\sqrt{\det(g)}} \frac{\partial}{\partial x^i} \left(\sqrt{\det(g)} Y^i \right) \tag{1.2}
$$

 \Box

1.7.3 Laplacian

Proposition 1.6. Given a smooth function $f \in C^{\infty}(M)$, the Laplacian of f is given by:

$$
\Delta f = \frac{1}{\sqrt{\det(g)}} \frac{\partial}{\partial x^i} \left(\sqrt{\det(g)} g^{ij} \frac{\partial f}{\partial x^j} \right)
$$

Proof:

The expression for the Laplacian in local coordinates follows quite trivially from the previous sections. We know that $\Delta f = \text{div}(\text{grad } f)$, so we can write:

$$
\Delta f = \text{div} (\text{grad } f)
$$

= $\frac{1}{\sqrt{\det(g)}} \frac{\partial}{\partial x^i} \left(\sqrt{\det(g)} (\text{grad } f)^i \right)$
= $\frac{1}{\sqrt{\det(g)}} \frac{\partial}{\partial x^i} \left(\sqrt{\det(g)} g^{ij} \frac{\partial f}{\partial x^j} \right)$

Which gives the final result:

$$
\Delta f = \frac{1}{\sqrt{\det(g)}} \frac{\partial}{\partial x^i} \left(\sqrt{\det(g)} g^{ij} \frac{\partial f}{\partial x^j} \right) \tag{1.3}
$$

 \Box

2 Jacobi Fields

Let (M, g) be a Riemannian manifold. A Jacobi field $J(t)$ along a geodesic $\gamma : I \to M$ is a smooth vector field which is defined in the following way:

Consider a smooth map

$$
f: (-\epsilon, \epsilon) \times [0, a] \to M
$$

$$
(s, t) \mapsto f_s(t) = f(s, t)
$$

And we think of this as a family of geodesics parameterized by $s \in (-\epsilon, \epsilon)$ such that for any $s \in (-\epsilon, \epsilon)$, $f_s : [0, a] \to M$ is a geodesic with $f_0 = \gamma$.

We then define:

$$
J(t) = \frac{\partial f}{\partial s}(0, t)
$$

Lemma 2.1. Let $A = (-\epsilon, \epsilon) \times [0, a] \subset \mathbb{R}^2$. Let $f : A \to M$ be any smooth map. Then $\frac{\partial}{\partial s}$ and $\frac{\partial}{\partial t}$ are global smooth vector fields on A. Remember that we defined:

$$
\frac{\partial f}{\partial s} := f_*\left(\frac{\partial}{\partial s}\right), \quad \frac{\partial f}{\partial t} := f_*\left(\frac{\partial}{\partial t}\right) \in C^\infty(A, f^*TM)
$$

Suppose that ∇ is the Levi-Civita connection on (M, g) . Let $D = f^* \nabla$ be the pullback connection on $f^* TM$. Then:

$$
\frac{D}{\partial s} \left(\frac{\partial f}{\partial t} \right) - \frac{D}{\partial t} \left(\frac{\partial f}{\partial s} \right) = 0 \tag{2.1}
$$

$$
\frac{D^2}{\partial t^2} \frac{\partial f}{\partial s} - \frac{D}{\partial s} \left(\frac{D}{\partial t} \frac{\partial f}{\partial t} \right) + R \left(\frac{\partial f}{\partial s}, \frac{\partial f}{\partial t} \right) \frac{\partial f}{\partial t} = 0 \tag{2.2}
$$

Proof of Lemma [2.1](#page-8-1)

First, we will prove equation [2.1.](#page-8-2)

By the symmetry of the pullback connection, we know that $f_*\left[\frac{\partial}{\partial s}, \frac{\partial}{\partial t}\right] = 0$. Then:

$$
0 = f_*\left[\frac{\partial}{\partial s}, \frac{\partial}{\partial t}\right] = f_*\left(\frac{\partial}{\partial s}\frac{\partial}{\partial t} - \frac{\partial}{\partial t}\frac{\partial}{\partial s}\right) = D_{\frac{\partial}{\partial s}}f_*\frac{\partial}{\partial t} - D_{\frac{\partial}{\partial t}}f_*\frac{\partial}{\partial s}
$$

Which can be easily rewritten as equaiton [2.1.](#page-8-2)

Now to prove equation [2.2:](#page-8-3)

Remember that the Riemann curvature tensor R is defined as:

$$
R(X,Y)Z = \nabla_X \nabla_Y Z - \nabla_Y \nabla_X Z - \nabla_{[X,Y]} Z
$$
\n(2.3)

Then from this equation, we can see that the pullback of the curvature tensor can be written as:

$$
R\left(\frac{\partial f}{\partial t},\frac{\partial f}{\partial s}\right)f_*\left(\frac{\partial}{\partial t}\right) = D_{\frac{\partial}{\partial t}}D_{\frac{\partial}{\partial s}}f_*\frac{\partial}{\partial t} - D_{\frac{\partial}{\partial s}}D_{\frac{\partial}{\partial t}}f_*\frac{\partial}{\partial t} - D_{\left[\frac{\partial}{\partial t},\frac{\partial}{\partial s}\right]}f_*\frac{\partial}{\partial t}
$$

But we know that $\left[\frac{\partial}{\partial t}, \frac{\partial}{\partial s}\right] = 0$, so the last term in the above equation is 0. Then we can rewrite the above equation as:

$$
R\left(\frac{\partial f}{\partial t},\frac{\partial f}{\partial s}\right)f_*\left(\frac{\partial}{\partial t}\right) = D_{\frac{\partial}{\partial t}}D_{\frac{\partial}{\partial s}}f_*\frac{\partial}{\partial t} - D_{\frac{\partial}{\partial s}}D_{\frac{\partial}{\partial t}}f_*\frac{\partial}{\partial t}
$$

Referring back to equation [2.1:](#page-8-2)

$$
\frac{D}{\partial s} \left(\frac{\partial f}{\partial t} \right) - \frac{D}{\partial t} \left(\frac{\partial f}{\partial s} \right) = 0 \implies \frac{D}{\partial s} \left(\frac{\partial f}{\partial t} \right) = \frac{D}{\partial t} \left(\frac{\partial f}{\partial s} \right)
$$

So we can swap the order of differentiation to get:

$$
R\left(\frac{\partial f}{\partial t},\frac{\partial f}{\partial s}\right)\left(\frac{\partial f}{\partial t}\right) = D_{\frac{\partial}{\partial t}} D_{\frac{\partial}{\partial t}} \frac{\partial f}{\partial s} - D_{\frac{\partial}{\partial s}} D_{\frac{\partial}{\partial t}} \frac{\partial f}{\partial t}
$$

And we can see that with some simple rearranging, and using $R(X, Y)Z = -R(Y, X)Z$ we get:

$$
\frac{D^2}{\partial t^2} \frac{\partial f}{\partial s} - \frac{D}{\partial s} \left(\frac{D}{\partial t} \frac{\partial f}{\partial t} \right) + R \left(\frac{\partial f}{\partial s}, \frac{\partial f}{\partial t} \right) \frac{\partial f}{\partial t} = 0
$$

Which is precisely equation [2.2.](#page-8-3)

2.1 Jacobi Equation

Now, by the defining property of a geodesic, given $s \in (-\epsilon, \epsilon)$, we can see that any geodesic $f_s : [0, a] \to M$ as defined above must necessarily satisfy:

$$
\frac{D}{\partial t}\frac{\partial f}{\partial t}(s,t) = 0 \quad \text{for any } s, t
$$

Which lets us rewrite the equation again as:

$$
R\left(\frac{\partial f}{\partial t}, \frac{\partial f}{\partial s}\right)\left(\frac{\partial f}{\partial t}\right) = \frac{D^2}{\partial t^2} \frac{\partial f}{\partial s}
$$

$$
\frac{D^2}{\partial t^2} \frac{\partial f}{\partial s} - R\left(\frac{\partial f}{\partial t}, \frac{\partial f}{\partial s}\right)\left(\frac{\partial f}{\partial t}\right) = 0
$$

$$
\frac{D^2}{\partial t^2} \frac{\partial f}{\partial s} + R\left(\frac{\partial f}{\partial s}, \frac{\partial f}{\partial t}\right)\left(\frac{\partial f}{\partial t}\right) = 0
$$

Notice that the sign changes due to the identity $R(X, Y)Z = -R(Y, X)Z$. In particular, if we consider $s = 0$, and set:

$$
\frac{\partial f}{\partial t}(0,t) = \gamma'(t) \quad \text{and} \quad \frac{\partial f}{\partial s}(0,t) = J(t)
$$

Then we get the Jacobi Equation:

$$
\frac{D^2}{\partial t^2}J(t) + R(J(t), \gamma'(t))\gamma'(t) = 0
$$
\n(2.4)

Definition 2.1. A vector field $J(t)$ along a geodesic $\gamma : [0, a] \to M$ is called a *Jacobi field* if it satisfies the Jacobi Equation [\(2.4\)](#page-9-1).

Definition 2.2. Let $\gamma : [0, a] \to M$ be a geodesic on a manifold M, with $\gamma(0) = p$ and $\gamma'(0) = v \in T_pM$, so that $\gamma(t) = \exp_p(tv)$. Then:

- (a) For any $u, w \in T_pM$, there is a unique Jacobi field $J(t)$ along $\gamma(t)$ with $J(0) = u$ and $\frac{DJ}{\partial t}(0) = w$.
- (b) If $J(t)$ is a Jacobi field along $\gamma(t)$, then there is a smooth map $f : (-\epsilon, \epsilon) \times [0, a] \rightarrow M$ written $f(s,t) = f_s(t)$ such that:
	- (i) for each $s \in (-\epsilon, \epsilon)$, $f_s : [0, a] \to M$ is a geodesic.
	- (ii) $f_0(t) = \gamma(t)$
	- (iii) $\frac{\partial f}{\partial s}(0,t) = J(t)$

Definition 2.3. Let $\gamma : [0, a] \to M$ be a geodesic on a manifold M, with $\gamma(0) = p$ and $\gamma'(0) = v \in T_pM$, so that $\gamma(t) = \exp_p(tv)$. Also let $J(t)$ be a Jacobi field along $\gamma(t)$ such that $J(0) = 0$ and $\frac{DJ}{\partial t}(0) = w$. Then for $t \in [0, a]$:

$$
J(t) = (d \exp_p)_{tv}(tw)
$$

Lemma 2.2. Let $\gamma : [0, a] \to M$ be a geodesic and $J(t)$ a Jacobi field along $\gamma(t)$. Then:

$$
\langle J(t), \gamma'(t) \rangle = \langle J(0), \gamma'(0) \rangle + t \langle J'(0), \gamma'(0) \rangle
$$

Proof

Define a smooth function $f : [0, a] \to \mathbb{R}$ by $f(t) = \langle J(t), \gamma'(t) \rangle$. The lemma can then be restated as $f(t) = f(0) + tf'(0)$. It suffices to show that $f''(0) = 0$.

Remember that because γ is a geodesic, $\frac{D}{dt}\gamma'(t) = 0$. Then:

$$
f'(t) = \langle J'(t), \gamma'(t) \rangle + \langle J(t), \gamma''(t) \rangle = \langle J'(t), \gamma'(t) \rangle
$$

\n
$$
f''(t) = \langle J''(t), \gamma'(t) \rangle + \langle J'(t), \gamma'(t) \rangle = \langle J''(t), \gamma'(t) \rangle
$$

\n
$$
= \langle J''(t), \gamma'(t) \rangle = -\langle R(J(t), \gamma'(t)) \gamma'(t), \gamma'(t) \rangle
$$

\n
$$
= R(J(t), \gamma'(t), \gamma'(t), \gamma'(t)) = 0
$$

Remark 2.3. Note that both $\gamma'(t)$ and $t\gamma'(t)$ are Jacobi fields along the geodesic γ . Then by the previous lemma, we see that:

$$
J(t) = \left(\langle J(0), \gamma'(0) \rangle \right) + t \left(\langle J'(t), \gamma'(t) \rangle \right) \frac{\gamma'(t)}{|\gamma'(0)|^2} + J^{\perp}(t)
$$

Where $J^{\perp}(t)$ is also a Jacobi field along γ and

$$
\langle J^\perp(t),\gamma'(t)\rangle=0
$$

2.2 Jacobi Fields on Manifolds with Constant Sectional Curvature

Suppose (M, g) is a Riemannian manifold with constant sectional curvature K. Let $\gamma : [0, a] \to M$ be a normalized geodesic $(|\gamma'|^2 = 1)$. Let $\gamma(0) = p \in M$, and $\gamma'(0) = v \in T_pM$. Then let $J(t)$ be a Jacobi field along $\gamma(t)$ such that:

$$
J(0)=0,\quad \frac{DJ}{\partial t}(0)=w,\quad \langle w,v\rangle=0
$$

Then $\langle J(t), \gamma'(t) \rangle = 0$ for all $t \in [0, a]$. For any smooth vector field $V(t)$ along $\gamma(t)$:

$$
\langle R(J,\gamma')\gamma',V\rangle=K\left(\langle\gamma',\gamma'\rangle\langle J,V\rangle-\langle\gamma',V\rangle\langle\gamma',J\rangle\right)=\langle KJ,V\rangle
$$

Therefore, $R(J, \gamma')\gamma' = KJ$, so J satisfies:

$$
\frac{D^2 J}{dt^2} + KJ = 0
$$

Let $J(t) = f(t)w(t)$ where f is a smooth function on [0, a], and $w(t)$ is the unique parallel vector field along $\gamma(t)$ such that $w(0) = w$. Then:

$$
\frac{D^2 J}{dt^2} + KJ = 0, \quad J(0) = 0, \quad \frac{DJ}{dt}(0) = w
$$

which is equivalent to:

$$
f'' + Kf = 0, \quad f(0) = 0, \quad f'(0) = 1
$$

Solving this differential equation, we get the solution:

$$
f(t) = \begin{cases} \frac{\sin(\sqrt{K}t)}{\sqrt{K}}, & K > 0; \\ t, & K = 0; \\ \frac{\sinh(\sqrt{-K}t)}{\sqrt{-K}}, & K < 0. \end{cases}
$$

Therefore, the unique Jacobi field $J(t)$ along $\gamma(t)$ such that $J(0) = 0$ and $\frac{DJ}{dt}(0) = w$, where $\langle w, \gamma'(0) \rangle = 0$, is given by:

$$
f(t)=\begin{cases} \frac{\sin(\sqrt{K}t)}{\sqrt{K}}w(t),\quad &K>0;\\ tw(t),\quad &K=0;\\ \frac{\sinh(\sqrt{-K}t)}{\sqrt{-K}}w(t),&K<0.\end{cases}
$$

Similarly, the unique Jacobi field $J(t)$ along $\gamma(t)$ such that $J(0) = u$ and $\frac{DJ}{dt}(0) = 0$, where $\langle u, \gamma'(0) \rangle = 0$, and $u(0) = u$ is given by:

$$
J(t) = \begin{cases} \cos(\sqrt{K}t)u(t), & K > 0, \\ u(t), & K = 0, \\ \cosh(\sqrt{-K}t)u(t), & K < 0, \end{cases}
$$

2.3 Taylor Expansion of g_{ij} in Local Coordinates

First, let us consider a geodesic $\gamma : [0, a] \to M$ such that $\gamma(0) = p$ and $\gamma'(0) = v$, so that $\gamma(t) = \exp_p(tv)$. Also let $J(t)$ be a Jacobi field along this geodesic $\gamma(t)$ with $J(0) = 0$ and $\frac{DJ}{dt} = w \in T_pM$. Alternatively, this means that $J(t) = (d \exp_p)_{tv}(tw)$.

Now, let $f = \langle J, J \rangle$. We want to compute the taylor expansion of f in order to determine the taylor series for $\langle J, J \rangle = |J(t)|^2$.

By the product rule, we can see that:

$$
f' = \frac{D}{dt} \langle J, J \rangle
$$

= $\langle \frac{DJ}{dt}, J \rangle + \langle J, \frac{DJ}{dt} \rangle$
= $\langle J', J \rangle + \langle J, J' \rangle$
= $2\langle J', J \rangle$

Additionally:

$$
f'' = \frac{D}{dt}f'
$$

= $\frac{D}{dt}2\langle J', J \rangle$
= $2\langle \frac{DJ'}{dt}, J \rangle + 2\langle J', \frac{DJ}{dt} \rangle$
= $2\langle J'', J \rangle + 2\langle J', J' \rangle$

Continuing along with this pattern and repeatedly applying the necessary product rules to this function, we can see that we have the following table:

$$
f' = 2\langle J', J \rangle
$$

\n
$$
f'' = 2\langle J'', J \rangle + 2\langle J', J' \rangle
$$

\n
$$
f^{(3)} = 2\langle J^{(3)}, J \rangle + 6\langle J'', J' \rangle
$$

\n
$$
f^{(4)} = 2\langle J^{(4)}, J \rangle + 8\langle J^{(3)}, J' \rangle + 6\langle J'', J'' \rangle
$$

\n
$$
f^{(5)} = 2\langle J^{(5)}, J \rangle + 10\langle J^{(4)}, J' \rangle + 20\langle J^{(3)}, J'' \rangle
$$

\n
$$
f^{(6)} = 2\langle J^{(6)}, J \rangle + 12\langle J^{(5)}, J' \rangle + 30\langle J^{(4)}, J'' \rangle + 20\langle J^{(3)}, J^{(3)} \rangle.
$$

Now we also need to compute the derivatives of $J(t)$ evaluated at 0. We already know that $J(0) = 0$ and $J'(0) = w$. We also can deduce from the Jacobi Equation that:

$$
J'' + R(\gamma', J)\gamma' = 0
$$

$$
J''(0) + R(\gamma'(0), J(0))\gamma'(0) = 0
$$

$$
J''(0) + R(v, 0)v = 0
$$

$$
J''(0) = 0
$$

To compute the second derivative, we can simply take the fact that we know $J'' = -R(\gamma', J)\gamma'$, and differentiate both sides, giving us the following. Keep in mind that since $\gamma(t)$ is a geodesic, $\gamma''(t) = 0$ for any t.

$$
J''' = -R'(\gamma', J)\gamma' - R(\gamma'', J)\gamma' - R(\gamma', J')\gamma' - R(\gamma', J)\gamma''
$$

= $-R'(\gamma', J)\gamma' - R(\gamma', J')\gamma'$

$$
J^{(3)}(0) = -R'(v, 0)v - R(v, w)v
$$

= $-R(v, w)v$

And then for $J^{(4)}$, we can differentiate both sides again:

$$
J^{(4)} = -R''(\gamma', J)\gamma' - R'(\gamma'', J)\gamma' - R'(\gamma', J')\gamma' - R'(\gamma', J)\gamma''
$$

$$
- R'(\gamma', J')\gamma' - R(\gamma'', J')\gamma' - R(\gamma', J'')\gamma' - R(\gamma', J')\gamma''
$$

$$
= -R''(\gamma', J)\gamma' - 2R'(\gamma', J')\gamma' - R(\gamma', J'')\gamma'
$$

$$
J^{(4)}(0) = -R''(v, 0)v - 2R'(v, w)v - R(v, 0)v
$$

$$
= -2R'(v, w)v
$$

$$
= -2\nabla_v R(v, w)v
$$

Continuing along, we eventually get to this table:

$$
J(0) = 0
$$

\n
$$
J'(0) = w
$$

\n
$$
J''(0) = 0
$$

\n
$$
J^{(3)}(0) = -R(v, w)v
$$

\n
$$
J^{(4)}(0) = -2\nabla_v R(v, w)v
$$

\n
$$
J^{(5)}(0) = -3\nabla_v \nabla_v R(v, w)v + R(v, R(v, w)v)v
$$

And then plugging this into the expressions for $f^{(k)}$ gives:

$$
f(0) = 0\n f'(0) = 0\n f''(0) = 2\langle w, w \rangle\n f^{(3)}(0) = 0\n f^{(4)}(0) = -8\langle R(v, w)v, w \rangle\n f^{(5)}(0) = -20\langle (\nabla_v R)(v, w)v, w \rangle\n f^{(6)}(0) = -36\langle (\nabla_v \nabla_v R)(v, w)v, w \rangle + 32\langle R(v, w)v, R(v, w)v \rangle.
$$

So, using this, along with the formula for the Taylor series centered at 0, we have that $f(t)$ can be written as:

$$
f(0) + f'(0)t + \frac{f''(0)}{2!}t^2 + \frac{f^{(3)}(0)}{3!}t^3 + \frac{f^{(4)}(0)}{4!}t^4 + \frac{f^{(5)}(0)}{5!}t^5 + \frac{f^{(6)}(0)}{6!}t^6 + O(t^6)
$$

So therefore, $f(t) = \langle J(t), J(t) \rangle = |J(t)|^2$ has the expansion:

$$
|J(t)|^2 = \langle w, w \rangle t^2 - \frac{1}{3} R(v, w, v, w) t^4 - \frac{1}{6} \langle (\nabla_v R)(v, w)v, w \rangle t^5 + \left[\frac{2}{45} \langle R(v, w)v, R(v, w)v \rangle - \frac{1}{20} \langle (\nabla_v \nabla_v R)(v, w)v, w \rangle \right] t^6 + o(t^6)
$$

From this expansion, as well as the fact that $J(t) = (d \exp_p)_{tv}(tw)$, we can repeat this same process as above to calculate $\langle (d \exp_p)_{tv}(tu), (d \exp_p)_{tv}(tw) \rangle$

This is done by considering two Jacobi fields $J_1(t)$ and $J_2(t)$ along the geodesic $\gamma(t) = \exp_p(tv)$ such that $\frac{DJ_1}{dt}(0) = u$ and $\frac{DJ_2}{dt}(0) = w$. Then, we can compute the inner product of these two Jacobi fields and expand it as a power series, deriving it in an identical way as above.

$$
\langle J_1(t), J_2(t) \rangle = \langle (d \exp_p)_{tv}(tu), (d \exp_p)_{tv}(tw) \rangle =
$$

$$
\langle u, w \rangle - \frac{1}{3} R(u, v, u, w) t^2 - \frac{1}{6} \langle (\nabla_v R)(u, v, u, w), v \rangle t^3
$$

$$
+ \left[\frac{2}{45} \langle R(u, v)u, R(v, w)v \rangle - \frac{1}{20} \langle (\nabla_v \nabla_v R)(u, v, u, w), v \rangle \right] t^4 + O(t^5)
$$

Now, if we let $\{e_1, \ldots, e_n\}$ be an orthonormal basis of T_pM , then we can plug this in to the equation, along with $t = 1$ and get:

$$
\langle (d \exp_p)_v(e_i), (d \exp_p)_v(e_j) \rangle =
$$

$$
\langle e_i, e_j \rangle - \frac{1}{3} R(v, e_i, v, e_j) - \frac{1}{6} \langle (\nabla_v R)(v, e_i, v, e_j), v \rangle
$$

+
$$
\left[\frac{2}{45} \langle R(v, e_i)v, R(v, e_j)v \rangle - \frac{1}{20} \langle (\nabla_v \nabla_v R)(v, e_i, v, e_j), v \rangle \right] + O(|v|^5)
$$

Now, also suppose that $B_{\epsilon}(p)$ is a geodesic ball with center p and radius $\epsilon > 0$, such that:

$$
q = \exp_p \left(\sum_{k=1}^n x_k e_k \right) \in B_{\epsilon}(p)
$$

Where (x_1, \ldots, x_n) are the normal coordinates determined by (e_1, \ldots, e_n) . In this case, we have the relationship that:

$$
\left. \frac{\partial}{\partial x_i} \right|_q = (d \exp_p)_{\sum_{k=1}^n x_k e_k}(e_i)
$$

Which makes:

$$
g_{ij}(x_1,\ldots,x_n) = \left\langle \frac{\partial}{\partial x_i} \bigg|_q, \frac{\partial}{\partial x_j} \bigg|_q \right\rangle = \left\langle (d \exp_p)_{\sum_{k=1}^n x_k e_k}(e_i), (d \exp_p)_{\sum_{k=1}^n x_k e_k}(e_j) \right\rangle
$$

So then, on $B_{\epsilon}(p)$, we have that:

$$
\nabla R = \sum_{i,j,k,l,m} R_{ijkl,m} dx^i \otimes dx^j \otimes dx^k \otimes dx^l \otimes dx^m
$$

$$
\nabla \nabla R = \sum_{i,j,k,l,r,s} R_{ijkl,rs} dx^i \otimes dx^j \otimes dx^k \otimes dx^l \otimes dx^r \otimes dx^s
$$

So that when we substitute in the necessary components, we end up with:

$$
g_{ij}(x) = \delta_{ij} - \frac{1}{3} \sum_{k,l} R_{ikjl}(p) x^k x^l - \frac{1}{6} \sum_{k,l,m} R_{ijkl,m}(p) x^k x^l x^m
$$

$$
- \frac{1}{20} \sum_{k,l,r,s} R_{ikjl,rs}(p) x^k x^l x^r x^s + \frac{2}{45} \sum_{k,l,r,s,m} R_{iklm}(p) R_{jrsm}(p) x^k x^l x^r x^s + O(|x|^5)
$$

Which is a taylor expansion of the metric tensor.

2.4 Taylor Expansion of $\sqrt{\det(g_{ij})}$

Now, if we let $g(x) = (g_{ij}(x))$, then we can see:

$$
g(x) = I + g^{(2)}(x) + g^{(3)}(x) + g^{(4)}(x) + O(|x|^5)
$$

Where I is the identity matrix, and $g^{(k)}(x)$ is the kth order term in the taylor expansion of $g(x)$.

Before continuing, we need to establish the following identity:

Lemma 2.4. Let A be any positive definite $n \times n$ matrix with n eigenvalues, $\{\lambda_i\}_{i=1}^n$, such that $\log(A)$ is well defined. Then,

$$
\sqrt{\det A} = \exp\left(\frac{1}{2}\operatorname{Tr}(\log(A))\right)
$$

Proof:

First, let us consider the eigenvalue decomposition of A. That is, we can write A as:

$$
A = Q\Lambda Q^{-1}
$$

Where Q is an orthogonal matrix, and Λ is a diagonal matrix with the eigenvalues of A on the diagonal. Then, we can see that:

$$
\det(A) = \det(Q)\det(\Lambda)\det(Q^{-1}) = \det(\Lambda) = \prod_{i=1}^{n} \lambda_i
$$

Which makes $\log(\det(A)) = \sum_{i=1}^{n} \log(\lambda_i)$

Now, we can also consider a matrix $\log(A)$ which is an $n \times n$ matrix as well, with eigenvalues $\{\log(\lambda_i)\}_{i=1}^n$. Remember as well that the trace of a matrix can be calculated as the sum of the eigenvalues, so:

$$
\mathrm{Tr}(\log(A)) = \sum_{i=1}^{n} \log(\lambda_i)
$$

We can see that both $log(det(A))$ and $Tr(log(A))$ are equal, so:

$$
\sqrt{\det(A)} = \sqrt{\exp(\log(\det(A)))} = \exp\left(\frac{1}{2}\log(\det(A))\right) = \exp\left(\frac{1}{2}\text{Tr}(\log(A))\right)
$$

So we have proved the lemma that:

$$
\sqrt{\det(A)} = \exp\left(\frac{1}{2}\text{Tr}(\log(A))\right)
$$

Now that we have proven this, we can move forward with the calculation.

We know that $log(I + A)$, given necessary restrictions, can be expanded as a taylor series as:

$$
\log(I+A) = A - \frac{A^2}{2} + \frac{A^3}{3} - \frac{A^4}{4} + O(|A|^5)
$$

Substituting the equation $g(x) = I + g^{(2)}(x) + g^{(3)}(x) + g^{(4)}(x) + O(|x|^5)$ into this, we can see that $g(x) = I + A$, where $A = g^{(2)}(x) + g^{(3)}(x) + g^{(4)}(x) + O(|x|^5)$. Therefore,

$$
\log(g(x)) = \left(g^{(2)}(x) + g^{(3)}(x) + g^{(4)}(x)\right) - \frac{\left(g^{(2)}(x) + g^{(3)}(x) + g^{(4)}(x)\right)^2}{2} + \frac{\left(g^{(2)}(x) + g^{(3)}(x) + g^{(4)}(x)\right)^3}{3} - \frac{\left(g^{(2)}(x) + g^{(3)}(x) + g^{(4)}(x)\right)^4}{4} + O(|x|^5)
$$

But since we are only expanding up to the 5th order, we can ignore many of these terms, such as $g^{(3)}(x)^2$, $g^{(4)}(x)^2$, and everything after that. So we can simplify this expression greatly, and come to the equation:

$$
\log(g(x)) = g^{(2)}(x) + g^{(3)}(x) + g^{(4)}(x) - \frac{g^{(2)}(x)^2}{2} + O(|x|^5)
$$

Using the expansion that was already derived for $g(x)$, we see that:

$$
-\frac{1}{2}g^{(2)}(x)^{2} = -\frac{1}{18} \sum_{k,l,r,s,m} R_{iklm} R_{jrsm} x^{k} x^{l} x^{r} x^{s}
$$

Giving the final answer for $log(g(x))$ as:

$$
\log(g(x))_{ij} = -\frac{1}{3} \sum_{k,l} R_{ikjl}(p) x^k x^l - \frac{1}{6} \sum_{k,l,m} R_{ijkl,m}(p) x^k x^l x^m
$$

$$
-\frac{1}{20} \sum_{k,l,r,s} R_{ikjl,r,s}(p) x^k x^l x^r x^s + \frac{2}{45} \sum_{k,l,r,s,m} R_{iklm}(p) R_{jrsm}(p) x^k x^l x^r x^s
$$

$$
-\frac{1}{18} \sum_{k,l,r,s,m} R_{iklm} R_{jrsm} x^k x^l x^r x^s + O(|x|^5)
$$

Taking the trace of this object involves simply summing over all values where $i = j$, i.e. $Tr(\log(g(x)))$ = $g^{ij} \log(g(x))_{ij}$. So we can see that:

$$
\log(g(x))_{ij} = -\frac{1}{3} \sum_{k,l} g^{ij} R_{ikjl}(p) x^k x^l - \frac{1}{6} \sum_{k,l,m} g^{ij} R_{ijkl,m}(p) x^k x^l x^m
$$

$$
- \frac{1}{20} \sum_{k,l,r,s} g^{ij} R_{ikjl,rs}(p) x^k x^l x^r x^s - \frac{1}{90} \sum_{k,l,r,s,m} g^{ij} R_{iklm}(p) R_{jrsm}(p) x^k x^l x^r x^s
$$

$$
+ O(|x|^5)
$$

$$
= -\frac{1}{3} \sum_{k,l} R_{kl}(p) x^k x^l - \frac{1}{6} \sum_{k,l,m} R_{kl,m}(p) x^k x^l x^m - \frac{1}{20} \sum_{k,l,r,s} R_{kl,rs}(p) x^k x^l x^r x^s
$$

$$
- \frac{1}{90} \sum_{i,k,l,r,s,m} R_{iklm}(p) R_{irsm}(p) x^k x^l x^r x^s
$$

Then, we have our result by the fact that $\sqrt{\det(g(x))} = \exp\left(\frac{1}{2}\text{Tr}(\log(g(x)))\right)$

$$
\sqrt{\det(g(x))} =
$$
\n
$$
1 - \frac{1}{6} \sum_{k,l} R_{kl}(p) x^k x^l - \frac{1}{12} \sum_{k,l,m} R_{k,l,m}(p) x^k x^l x^m
$$
\n
$$
- \sum_{k,l,r,s} \left(-\frac{1}{40} \sum_{k,l,r,s} R_{kl,rs}(p) - \frac{1}{180} \sum_{i,m} R_{iklm}(p) R_{irsm}(p) + \frac{1}{72} R_{kl}(p) R_{rs}(p) \right) x^k x^l x^r x^s
$$
\n
$$
+ O(|x|^5)
$$

3 Isometric Immersions

Let (M, q) and $(\widetilde{M}, \widetilde{q})$ be Riemannian manifolds, and $f : M \to \widetilde{M}$ be a differentiable immersion of a manifold M of dimension n into a manifold \widetilde{M} of dimension \widetilde{n} . The Riemannian metric \widetilde{q} on \widetilde{M} induces a Riemannian metric q on M .

Definition 3.1. We call $f : M \to \widetilde{M}$ an isometric immersion if for any $v_1, v_2 \in T_pM$

$$
g(v_1, v_2) = \widetilde{g}(df_p(v_1), df_p(v_2))
$$

For the rest of the section, let ∇ be the Levi-Civita connection on (M, g) , and $\widetilde{\nabla}$ be the Levi-Civita connection on (\tilde{M}, \tilde{g}) . Also, $D := f^*\tilde{\nabla}$ is the pullback connection on $f^*T\tilde{M}$.

3.1 Normal Bundle

For any $p \in M$, $T_{f(p)}\widetilde{M} = (f^*TM)_p = T_pM \oplus (T_pM)^{\perp}$. This is known as the orthogonal decomposition of $T_{f(p)}M$.

We want to identify T_pM with $df_p(T_pM) \subset T_{f(p)}\overline{M}$

Notation: For any $v \in T_{f(p)}\widetilde{M} = (f^*TM)_p$, we will write $v = v^T + v^N$, where $v^T \in T_pM$ and $v^N \in (T_pM)^N$. **Definition 3.2.** We define the *normal bundle* of the isometric immersion $f : (M, g) \to (\widetilde{M}, \widetilde{g})$ to be

$$
N(f) = \bigcup_{p \in M} (T_p M)^{\perp} \subset \bigcup_{p \in M} (f^*TM)_p = f^*TM
$$

It is a rank $k = \tilde{n} - n$ C^{∞} vector bundle over M. It is also a rank k C^{∞} subbundle of $f^*T\tilde{M}$, for which we can see the orthogonal composition of below.

$$
f^*T\widetilde{M} = TM \oplus N(f)
$$

$$
C^{\infty}(M, f^*T\widetilde{M}) = C^{\infty}(M, TM) \oplus C^{\infty}(M, N(f))
$$

In do Carmo's $[dC]$ notation, $C^{\infty}(M, TM) = \mathfrak{X}(M)$, and $C^{\infty}(M, N(f)) = \mathfrak{X}(M)^{\perp}$.

Notation:

If $f: M \to \widetilde{M}$ is an immersion, we have that by definition, $\forall p \in M$, the following maps are injective, as an R-linear map between vector spaces, or as a morphism between $C^{\infty}(M)$ -modules:

$$
df_p: T_pM \to T_{f(p)}M
$$

$$
f_*: \mathfrak{X}(M) \to C^\infty(M, f^*T\widetilde{M})
$$

We sometimes identify $X \in \mathfrak{X}(M)$ with $f_*(X) \in C^\infty(M, f^*T\widetilde{M}).$ For $X, Y \in \mathfrak{X}(M) \subset C^{\infty}(M, f^*T\widetilde{M})$, we have that $D_X(f^*Y) \in C^{\infty}(M, f^*T\widetilde{M})$ Note that we can decompose $D_X(f_*Y) = (D_X(f_*Y))^T + (D_X(f_*Y))^N$ Also, it is possible to prove $(D_X(f_*Y))^T = f_*(\nabla_X Y) \in C^\infty(M, f^*T\widetilde{M})$, and $(D_XY)^T = \nabla_X Y$

Definition 3.3. Let $f : (M, g) \to (\overline{M}, \tilde{g})$ be an isometric immersion, and $D := f^* \tilde{\nabla}$ Define a map $B(X, Y)$ by:

$$
B: \mathfrak{X}(M) \times \mathfrak{X}(M) \to \mathfrak{X}(M)^{\perp}
$$

$$
(X, Y) \mapsto (D_X(f_*Y))^N
$$

Lemma 3.1. For any $X, Y \in \mathfrak{X}(M)$:

- (i) $B(X, Y)$ is a $C^{\infty}(M)$ -bilinear map
- (ii) B is symmetric
- (iii) $B \in C^{\infty}(M, \mathrm{Sym}^2 T^*M \otimes N(f))$

Proof:

Note that $B(X, Y)$ can also be defined in another way. Let $X, Y \in \mathfrak{X}(M)$, and $\widetilde{X}, \widetilde{Y}$ be extensions of X, Y to \widetilde{M} . We see that $\nabla_X Y = \left(\widetilde{\nabla}_{\widetilde{X}} \widetilde{Y}\right)^T$, which means an alternate definition of B is:

$$
B(X,Y) = \widetilde{\nabla}_{\widetilde{X}} \widetilde{Y} - \nabla_X Y
$$

We can see that $B(X, Y)$ is $C^{\infty}(M)$ -linear by the following argument:

$$
B(fX,Y)=\widetilde{\nabla}_{f\widetilde{X}}\widetilde{Y}-\nabla_{fX}Y=f\left(\widetilde{\nabla}_{\widetilde{X}}\widetilde{Y}-\nabla_{X}Y\right)=fB(X,Y)
$$

$$
B(X, fY) = \widetilde{\nabla}_{\widetilde{X}} f\widetilde{Y} - \nabla_X fY = \widetilde{f}\widetilde{\nabla}_{\widetilde{X}} \widetilde{Y} - f\nabla_X Y + \widetilde{X}(\widetilde{f})\widetilde{Y} - X(f)Y = f\left(\widetilde{\nabla}_{\widetilde{X}} \widetilde{Y} - \nabla_X Y\right) = fB(X, Y)
$$

Additionally, to see that $B(X, Y)$ is symmetric:

$$
B(X,Y) = \widetilde{\nabla}_{\widetilde{X}} \widetilde{Y} - \nabla_X Y = \widetilde{\nabla}_{\widetilde{Y}} \widetilde{X} + [\widetilde{X}, \widetilde{Y}] - \nabla_Y X - [X,Y] = \widetilde{\nabla}_{\widetilde{Y}} \widetilde{X} - \nabla_Y X = B(Y,X)
$$

So we have shown that $B(X, Y)$ is a symmetric bilinear function.

3.2 Second Fundamental Form and Shape Operator

Definition 3.4. The second fundamental form of the isometric immersion $f : (M, g) \to (\widetilde{M}, \widetilde{g})$ at $p \in M$ along $\eta \in (T_pM)^{\perp}$ is defined to be:

$$
H_{\eta}: T_p M \times T_p M \to \mathbb{R}
$$

$$
H_{\eta}(x, y) \mapsto \langle B(x, y), \eta \rangle
$$

This gives rise to another mapping (sometimes also called the second fundamental form).

$$
\mathbb{I}_\eta(x) = H_\eta(x, x)
$$

Definition 3.5. Define the shape operator as a mapping:

$$
S_\eta:T_pM\to T_pM
$$

such that for any $x, y \in T_pM$, we have that:

$$
\langle S_\eta(x),y\rangle = H_\eta(x,y)
$$

Proposition 3.6. The shape operator is self adjoint, i.e., $\langle S_{\eta}(x), y \rangle = \langle x, S_{\eta}(y) \rangle$ Proof:

$$
\langle S_{\eta}(x), y \rangle = H_{\eta}(x, y)
$$

= $\langle B(x, y), \eta \rangle$
= $\langle B(y, x), \eta \rangle$
= $H_{\eta}(y, x)$
= $\langle S_{\eta}(y), x \rangle$
= $\langle x, S_{\eta}(y) \rangle$

Lemma 3.2. Let $X \in \mathfrak{X}(M)$ and $\eta \in \mathfrak{X}(M)^{\perp}$. Then $S_{\eta}(X) = -(D_X \eta)^{\perp}$ Proof:

$$
\langle S_{\eta}(X), Y \rangle = \langle B(X, Y), \eta \rangle
$$

\n
$$
= \langle (D_X(Y))^N, \eta \rangle
$$

\n
$$
= \langle (D_X(Y))^N, \eta \rangle + 0
$$

\n
$$
= \langle (D_X(Y))^N, \eta \rangle + \langle (D_X(Y))^T, \eta \rangle
$$

\n
$$
= \langle D_X(Y), \eta \rangle
$$

\n
$$
= \langle D_X(Y), \eta \rangle + \langle Y, D_X \eta \rangle - \langle Y, D_X \eta \rangle
$$

\n
$$
= \langle Y, Y, \eta \rangle - \langle Y, D_X \eta \rangle
$$

\n
$$
= -\langle Y, D_X \eta \rangle \quad (Y \in \mathfrak{X}(M) \text{ and } \eta \in \mathfrak{X}(M)^{\perp} \implies \langle Y, \eta \rangle = 0)
$$

\n
$$
= \langle - (D_X \eta)^T, Y \rangle \quad \text{(because the } (D_X \eta)^{\perp} \text{ term vanishes in the inner product)}
$$

So we have shown that $S_{\eta}(X) = -(D_X \eta)^{\perp}$

Corollary 3.7. An immediate corollary of Lemma [3.2](#page-20-0) is that if $\dim(\widetilde{M}) = \dim(M) + 1$, then we have the existence of a unit normal $\eta \in C^{\infty}(M, N(f)), \langle \eta, \eta \rangle = 1$, which implies $S_{\eta}(X) = -D_X \eta \quad \forall x \in \mathfrak{X}(M)$. η exists $\iff N(f)$ is trivial.

 \Box

Additionally, η is unique up to sign if M is connected.

We can see that this is true because:

$$
(D_x \eta)^N = \langle D_x \eta, \eta \rangle \eta
$$

= $\left(\frac{1}{2}X \langle \eta, \eta \rangle\right) \eta$
= $\frac{1}{2}(0)\eta$
= 0

So we do not need to worry about the normal component of the derivative, meaning in this case,

$$
S_{\eta}(x) = -(D_X \eta)^T = -(D_X \eta)^T - (D_X \eta)^N + (D_X \eta)^N = -(D_X \eta) + (0) = -D_X \eta
$$

Example 3.1. Calculate the second fundamental form of $f : (S^n, g_{can}) \hookrightarrow (\mathbb{R}^{n+1}, g_0)$ along the inward unit normal.

On the sphere, $\forall p \in S^n$ $\eta(p) = -p$.

Let
$$
\widetilde{\eta} = \sum_{j=1}^{n+1} X_j \frac{\partial}{\partial x_j} \in \mathfrak{X}(\mathbb{R}^{n+1})
$$

Then for any $p \in S^n$, we have $\tilde{\eta}(p) = \eta(p)$

Consider the covariant derivative $\tilde{\nabla}$ defined by g_0 on \mathbb{R}^{n+1} , so that:

$$
\widetilde{\nabla}\widetilde{\eta} = -\sum_{j=1}^{n+1} dx_j \otimes \frac{\partial}{\partial x_j} \in C^{\infty}(\mathbb{R}^{n+1}, \text{End}(T\mathbb{R}^{n+1}))
$$

For all $p \in \mathbb{R}^{n+1}$, we have:

$$
\left(\widetilde{\nabla}\widetilde{\eta}\right)_p : T_p \mathbb{R}^{n+1} \to T_p \mathbb{R}^{n+1}
$$

$$
\frac{\partial}{\partial x_j}(p) \mapsto -\frac{\partial}{\partial x_j}(p)
$$

Which means that $(\tilde{\nabla}\tilde{\eta})$ $p_p = -id T_p \mathbb{R}^{n+1}$, or equivalently, $\widetilde{\nabla}_v \widetilde{\eta} = -v \quad \forall v \in T_p \mathbb{R}^{n+1}$ Recall that $D = f^* \widetilde{\nabla}$ and $\eta = f^* \widetilde{\eta}$ so that for all $p \in S^n$ and $v \in T_p S^n$

$$
S_{\eta}(v) = -D_{v}\eta = -\widetilde{\nabla}_{v}\widetilde{\eta} = v
$$

$$
H_{\eta}(X,Y) = \langle S_{\eta}(X), Y \rangle = \langle X, Y \rangle
$$

Which immediately lets us conclude that $H_{\eta} = g_{can}^{S^{n}}$

 \Box

3.3 Connections on the Normal Bundle

We define a connection ∇^{\perp} on $N(f)$ by:

$$
\nabla_X^{\perp} \eta = (D_X \eta)^N
$$

Choose $X, Y \in \mathfrak{X}(M)$, and $\eta \in \mathfrak{X}(M)^{\perp}$. Then we have the following:

$$
D_X Y = (D_X Y)^T + (D_X Y)^N = \nabla_X Y + B(X, Y)
$$

$$
D_X \eta = (D_X \eta)^T + (D_X \eta)^N = -S_\eta(X) + \nabla_X^{\perp} \eta
$$

where:

$$
\nabla \text{ is a connection on } TM, T^*M, (TM)^{\otimes r} \otimes (T^*M)^{\otimes s}
$$

$$
\nabla^{\perp} \text{ is a connection on } N(f), N(f)^*, N(f)^{\otimes \ell} \otimes (N(f)^*)^{\otimes m}
$$

 $(N(f))^*$ is called the *conormal bundle*.

These connections allow us to define a general connection on $(TM)^{\otimes r} \otimes (T^*M)^{\otimes s} \otimes N(f)^{\otimes \ell} \otimes (N(f)^*)^{\otimes m}$ In particular, let us define $B \in C^{\infty} (M, (T^*M)^{\otimes^2} \otimes N(f)^*)$ by:

$$
B(Y, Z, \eta) = \langle B(Y, Z), \eta \rangle
$$

with $Y, Z \in \mathfrak{X}(M)$ and $\eta \in \mathfrak{X}(M)^{\perp}$ So that for $X \in \mathfrak{X}(M)$, we can define:

$$
D_X B \in C^{\infty}(M, (T^*M)^{\otimes^2} \otimes N(f)^*)
$$

as

$$
(D_XB)(Y,Z,\eta)=X(B(Y,Z,\eta))-B(\nabla_XY,Z,\eta)-B(Y,\nabla_XZ,\eta)+B(Y,Z,\nabla_X^{\perp}\eta)
$$

with $X, Y, Z \in \mathfrak{X}(M)$ and $\eta \in \mathfrak{X}(M)^{\perp}$

3.4 Normal Curvature

Let us first define some terms related to curvature. These will be necessary for defining the Guass, Codazzi, and Ricci equations for isometric immersions.

Recall that on a Riemannian manifold (M, g) , the curvature tensor R is defined by:

$$
R(X,Y)Z = \nabla_X \nabla_Y Z - \nabla_Y \nabla_X Z - \nabla_{[X,Y]} Z
$$

We can generalize this in the following way:

$$
R_{\overline{\nabla}} \in \Omega^2 \left(\widetilde{M}, \text{End}\left(T \widetilde{M} \right) \right)
$$

\n
$$
R := f^* R_{\overline{\nabla}} = R_{f^* \overline{\nabla}} = R_D \in \Omega^2 \left(M, \text{End}\left(f^* T \widetilde{M} \right) \right)
$$

\n
$$
R = R_{\nabla} \in \Omega^2 \left(M, \text{End}\left(T M \right) \right)
$$

\n
$$
R^{\perp} = R_{\nabla^{\perp}} \in \Omega^2 \left(M, \text{End}\left(N(f) \right) \right)
$$

Note that End(f^*TM) is the space of all automorphisms of f^*TM , or $C^{\infty}(M)$ -linear maps from f^*TM to itself. We can visualize some of the equations that we will be deriving in the following picture:

3.4.1 Gauss Equation

Proposition 3.8. The Gauss Equation is given by:

$$
\langle \overline{R}(X,Y)Z,T \rangle = \langle R(X,Y)Z,T \rangle + \langle B(X,T),B(Y,Z) \rangle - \langle B(X,Z),B(Y,T) \rangle
$$

Proof:

First recall that $\overline{\nabla}_XY = \nabla_XY + B(X, Y)$ So then we have:

$$
\overline{R}(X,Y)Z = \overline{\nabla}_{Y}\overline{\nabla}_{X}Z - \overline{\nabla}_{X}\overline{\nabla}_{Y}Z + \overline{\nabla}_{[X,Y]}Z
$$
\n
$$
= \overline{\nabla}_{Y}(\nabla_{X}Z + B(X,Z)) - \overline{\nabla}_{X}(\nabla_{Y}Z + B(Y,Z)) + \nabla_{[X,Y]}Z + B([X,Y],Z)
$$
\n
$$
= \nabla_{Y}\nabla_{X}Z + \nabla_{Y}B(X,Z) + B(Y,\nabla_{X}Z + B(X,Z))
$$
\n
$$
- \nabla_{X}\nabla_{Y}Z - \nabla_{X}B(Y,Z) - B(X,\nabla_{Y}Z + B(Y,Z))
$$
\n
$$
+ \nabla_{[X,Y]}Z + B([X,Y],Z)
$$
\n
$$
= \nabla_{Y}\nabla_{X}Z - \nabla_{X}\nabla_{Y}Z + \nabla_{[X,Y]}Z + \nabla_{Y}B(X,Z) - \nabla_{X}B(Y,Z)
$$
\n
$$
+ B([X,Y],Z) + B(Y,\nabla_{X}Z) - B(X,\nabla_{Y}Z) + B(Y,B(X,Z)) - B(X,B(Y,Z))
$$
\n
$$
= R(X,Y)Z + \nabla_{Y}^{\perp}B(X,Z) - \nabla_{X}^{\perp}B(Y,Z) + B([X,Y],Z) + B(Y,\nabla_{X}Z) - B(X,\nabla_{Y}Z)
$$
\n
$$
+ B(Y,B(X,Z)) - B(X,B(Y,Z))
$$
\n
$$
= R(X,Y)Z + \nabla_{Y}^{\perp}B(X,Z) - \nabla_{X}^{\perp}B(Y,Z) + B([X,Y],Z) + B(Y,\nabla_{X}Z) - B(X,\nabla_{Y}Z)
$$
\n
$$
- S_{B(X,Z)}(Y) + S_{B(Y,Z)}(X)
$$

And now taking this inner product with T , we have:

$$
\langle \overline{R}(X,Y)Z,T \rangle = \langle R(X,Y)Z,T \rangle + \langle \nabla_Y^{\perp} B(X,Z),T \rangle - \langle \nabla_X^{\perp} B(Y,Z),T \rangle \n+ \langle B([X,Y],Z),T \rangle + \langle B(Y,\nabla_X Z),T \rangle - \langle B(X,\nabla_Y Z),T \rangle \n- \langle S_{B(X,Z)}(Y),T \rangle + \langle S_{B(Y,Z)}(X),T \rangle \n= \langle R(X,Y)Z,T \rangle + \langle B(X,T),B(Y,Z) \rangle - \langle B(X,Z),B(Y,T) \rangle
$$

Notice that we took advantage of two very important formulas:

- 1. $B(X,T) = -S_T(X)$
- 2. $\langle S_{\eta}(X), Y \rangle = \langle B(X, Y), \eta \rangle$

As well as the fact that ∇^{\perp} is a connection on $N(f)$, so that the inner product of ∇^{\perp} with any tangent vector T vanishes. Therefore, we have the desired result:

$$
\langle \overline{R}(X,Y)Z,T\rangle = \langle R(X,Y)Z,T\rangle + \langle B(X,T),B(Y,Z)\rangle - \langle B(X,Z),B(Y,T)\rangle
$$

 \Box

3.4.2 Codazzi Equation

Proposition 3.9. The Codazzi Equation is given by:

$$
\langle \overline{R}(X,Y)Z,\eta\rangle = \langle \overline{R}(X,Y)\eta,Z\rangle = (D_YB)(X,Z,\eta) - (D_XB)(Y,Z,\eta)
$$

Proof:

Given an isometric immersion, let us denote the space of vector fields normal to M by $\mathfrak{X}(M)^{\perp}$. The second fundamental form of the immersion can then be thought of as a tensor:

$$
B:\mathfrak{X}(M)\times\mathfrak{X}(M)\times\mathfrak{X}(M)^{\perp}\to\mathbb{R}
$$

which is defined by $B(X, Y, \eta) = \langle B(X, Y), \eta \rangle$

And this allows us to naturally extend the definition of the covariant derivative as:

$$
\left(\overline{\nabla}_X B\right)(Y,Z,\eta) = X(B(Y,Z,\eta)) - B(\nabla_X Y,Z,\eta) - B(Y,\nabla_X Z,\eta) + B(Y,Z,\nabla_X^{\perp}\eta)
$$

Then using this notation, we see that:

$$
\left(\overline{\nabla}_{X}B\right)(Y,Z,\eta) = X(B(Y,Z,\eta)) - B(\nabla_{X}Y,Z,\eta) - B(Y,\nabla_{X}Z,\eta) + B(Y,Z,\nabla_{X}^{\perp}\eta)
$$

$$
= \langle \nabla_{X}^{\perp}(B(Y,Z)),\eta \rangle - \langle B(\nabla_{X}Y,Z),\eta \rangle - \langle B(Y,\nabla_{X}Z),\eta \rangle
$$

Recall from the proof of the Guass equation that we have:

$$
\overline{R}(X,Y)Z = R(X,Y)Z + B(Y,\nabla_X Z) + \nabla_Y^{\perp}B(X,Z) - S_{B(X,Z)}Y - B(X,\nabla_Y Z) - \nabla_X^{\perp}B(Y,Z) + S_{B(Y,Z)}X + B([X,Y],Z).
$$

Now using this, we can immediately see:

$$
\langle \overline{R}(X,Y)Z,\eta \rangle = \langle R(X,Y)Z,\eta \rangle + \langle B(Y,\nabla_X Z),\eta \rangle + \langle \nabla_Y^{\perp} B(X,Z),\eta \rangle - \langle S_{B(X,Z)}Y,\eta \rangle \n- \langle B(X,\nabla_Y Z),\eta \rangle - \langle \nabla_X^{\perp} B(Y,Z),\eta \rangle + \langle S_{B(Y,Z)}X,\eta \rangle + \langle B([X,Y],Z),\eta \rangle \n= \langle B(Y,\nabla_X Z),\eta \rangle + \langle \nabla_Y^{\perp} B(X,Z),\eta \rangle - \langle B(X,\nabla_Y Z),\eta \rangle \n- \langle \nabla_X^{\perp} B(Y,Z),\eta \rangle + \langle B(\nabla_X Y,Z),\eta \rangle - \langle B(\nabla_Y X,Z)\eta \rangle
$$

Then from this, notice that:

$$
\langle \nabla_Y^{\perp}(B(X,Z)), \eta \rangle = Y \langle B(X,Z), \eta \rangle - \langle B(X,Z), D_Y \eta \rangle
$$

= $Y(B(X,Z,\eta)) - \langle B(X,Z), \nabla_Y^{\perp} \eta \rangle$
= $(D_Y B)(X, Z, \eta) + B(\nabla_Y X, Z, \eta) + B(X, \nabla_Y Z, \eta)$

And this lets us conclude:

$$
(D_YB)(X,Z,\eta)=\langle \nabla_Y^{\perp}(B(X,Z)),\eta\rangle-B(\nabla_YX,Z,\eta)-B(X,\nabla_YZ,\eta)
$$

Using this equivalence, we can greatly simplify the above expression for $\langle \overline{R}(X, Y)Z, \eta \rangle$:

$$
\langle \overline{R}(X,Y)Z,\eta\rangle = (D_YB)(X,Z,\eta) - (D_XB)(Y,Z,\eta)
$$

Which is the Codazzi equation.

 \Box

3.4.3 Ricci Equation

Proposition 3.10. The Ricci Equation is given by:

$$
\langle \overline{R}(X,Y)\eta,\xi\rangle = \langle R^{\perp}(X,Y)\eta,\xi\rangle + \langle [S_{\eta},S_{\xi}]X,Y\rangle
$$

where

$$
[S_{\eta}, S_{\xi}] X = S_{\eta} \circ S_{\xi}(X) - S_{\xi} \circ S_{\eta}(X)
$$

Proof:

First, recall that we have:

$$
\overline{\nabla}_X \eta = \nabla_X^{\perp} \eta - S_{\eta}(X)
$$

And then consider:

$$
\overline{R}(X,Y)\eta = \overline{\nabla}_{Y}\overline{\nabla}_{X}\eta - \overline{\nabla}_{X}\overline{\nabla}_{Y}\eta + \overline{\nabla}_{[X,Y]}\eta
$$
\n
$$
= \overline{\nabla}_{Y}(\nabla_{X}^{\perp}\eta + B(X,\eta)) - \overline{\nabla}_{X}(\nabla_{Y}^{\perp}\eta + B(Y,\eta)) + \nabla_{[X,Y]}\eta + B([X,Y],\eta)
$$
\n
$$
= \overline{\nabla}_{Y}(\nabla_{X}^{\perp}\eta - S_{\eta}(X)) - \overline{\nabla}_{X}(\nabla_{Y}^{\perp}\eta - S_{\eta}(Y)) + \nabla_{[X,Y]}\eta - S_{\eta}([X,Y])
$$
\n
$$
= \overline{\nabla}_{Y}\nabla_{X}^{\perp}\eta - \overline{\nabla}_{Y}S_{\eta}(X) - \overline{\nabla}_{X}\nabla_{Y}^{\perp}\eta + \overline{\nabla}_{X}S_{\eta}(Y) + \nabla_{[X,Y]}\eta - S_{\eta}([X,Y])
$$
\n
$$
= \nabla_{Y}^{\perp}\nabla_{X}^{\perp}\eta - S_{\nabla_{X}^{\perp}\eta}Y - \nabla_{Y}^{\perp}S_{\eta}(X) + S_{S_{\eta}(X)}Y - \nabla_{X}^{\perp}\nabla_{Y}^{\perp}\eta + S_{\nabla_{Y}^{\perp}\eta}X
$$
\n
$$
+ \nabla_{X}^{\perp}S_{\eta}Y - S_{S_{\eta}Y}X + \nabla_{[X,Y]}\eta - S_{\eta}([X,Y])
$$

Then using the fact that $S_\eta X = -B(X,\eta),$ we have:

$$
\overline{R}(X,Y)\eta = \nabla^{\perp}_Y \nabla^{\perp}_X \eta - \nabla^{\perp}_X \nabla^{\perp}_Y \eta + \nabla^{\perp}_{[X,Y]}\eta - B(Y, S_{\eta}X) + B(X, S_{\eta}Y) \n- S_{\nabla^{\perp}_X \eta} Y + S_{\nabla^{\perp}_Y \eta} X + \nabla^{\perp}_X S_{\eta} Y - \nabla^{\perp}_Y S_{\eta} X - S_{\eta}([X,Y])
$$

And then multiplying both sides by ξ , while remembering that $\langle B(X, Y), \eta \rangle = \langle S_{\eta} X, Y \rangle$, while also noticing that since ξ is a tangent vector and orthogonal to η , the terms involving S_{η} disappear, we obtain:

$$
\langle \overline{R}(X,Y)\eta,\xi \rangle = \langle R^{\perp}(X,Y)\eta,\xi \rangle - \langle B(S_{\eta}X,Y),\xi \rangle + \langle B(S_{\eta}Y,X),\xi \rangle
$$

$$
= \langle R^{\perp}(X,Y)\eta,\xi \rangle + \langle (S_{\eta}S_{\xi} - S_{\xi}S_{\eta})X,Y \rangle
$$

$$
= \langle R^{\perp}(X,Y)\eta,\xi \rangle + \langle [S_{\eta},S_{\xi}]X,Y \rangle
$$

So we have proven the Ricci equation which states:

$$
\langle \overline{R}(X,Y) \eta, \xi \rangle = \langle R^\perp(X,Y) \eta, \xi \rangle + \langle \left[S_\eta, S_\xi \right] X,Y \rangle
$$

 \Box

3.5 Corollaries of the Gauss, Codazzi, and Ricci Equations

Let $p\in M,$ and $x,y\in T_pM$ be orthonormal. Then we can define

$$
\sigma := \mathbb{R}x \oplus \mathbb{R}y \subset T_p M \subset T_{f(p)}\widetilde{M}
$$

$$
K(x, y) := K(\sigma) = R(x, y, x, y)
$$

$$
\overline{K}(x, y) := \overline{K}(\sigma) = \overline{R}(x, y, x, y)
$$

Which means that the Guass equation in this case can be rewritten as:

$$
\overline{K}(x,y) = K(x,y) - \langle B(x,x), B(y,y) \rangle + |B(x,y)|^2
$$

Or equivalently:

$$
K(x, y) - \overline{K}(x, y) = \langle B(x, x), B(y, y) \rangle - |B(x, y)|^2
$$

3.5.1 Example with S^n

In particular, if we have:

$$
f:(M,g)=(S^n,g_{can})\hookrightarrow (\widetilde{M},\widetilde{g})=(\mathbb{R}^{n+1},g_0)
$$

We already know that $\forall p \in S^n$, $\eta(p) = -p$, and $\forall x, y \in T_p S^n$, we have $B(x, y) = H_\eta(x, y)\eta = \langle x, y \rangle \eta$, when \boldsymbol{x} and \boldsymbol{y} are orthonormal.

$$
K(x, y) - \overline{K}(x, y) = \langle B(x, x), B(y, y) \rangle - |B(x, y)|^2
$$

$$
K(x, y) - 0 = \langle x, x \rangle \langle y, y \rangle - \langle x, y \rangle^2
$$

$$
K(x, y) = 1 \cdot 1 - 0^2
$$

$$
K(x, y) = 1
$$

So we have shown that (S^n, g_{can}) has constant sectional curvature equal to 1, for any $n \geq 2$.

4 Geodesic Manifolds

Definition 4.1. Let $f : (M, g) \to (\overline{M}, \overline{g})$ be an isometric immersion. We say that f is geodesic at $p \in M$ if:

$$
B(p): T_p M \times T_p M \to (T_p M)^{\perp}
$$

is zero. Alternatively, this is true if and only if $\forall \eta \in (T_pM)^{\perp}$, $H_{\eta} = 0$.

We say that f is totally geodesic if f is geodesic at every $p \in M$.

Lemma 4.1. Let $f : (M, g) \to (\widetilde{M}, \widetilde{g})$ be an isometric immersion, and I an open interval. Also consider the following commutative diagram

- $\gamma: I \to M$ is a C^{∞} curve in M
- $f \circ \gamma : I \to \widetilde{M}$ is a C^{∞} curve in \widetilde{M}
- *V* is a C^{∞} vector field along γ
- $\widetilde{V} := df \circ V : I \to T\widetilde{M}$ is a C^{∞} vector field along $f \circ \gamma$

Then we have:

$$
\frac{\dot{D}}{dt}\widetilde{V}(t) = \frac{D}{dt}V(t) + B(\gamma'(t), V(t))
$$

Where $\frac{D}{dt}$ is defined by $(f \circ \gamma)^* \widetilde{\nabla} = \gamma^* D$, and $D = f^* \widetilde{\nabla}$. Proof:

Both $\frac{D}{dt}\widetilde{V}(t) - \frac{D}{dt}V(t)$ and $B(\gamma'(t), V(t))$ are $C^{\infty}(I)$ -linear in $V(t)$. So it suffices to check this when $V(t) = X(\gamma(t))$ and $X \in \mathfrak{X}(M)$, then:

$$
\frac{\tilde{D}}{dt}\tilde{V}(t) = D'_{\gamma}(t)X
$$

$$
\frac{D}{dt}V(t) = \nabla_{\gamma'(t)}X
$$

$$
\frac{D}{dt}\widetilde{V}(t) - \frac{D}{dt}V(t) = D'_{\gamma}(t)X - \nabla_{\gamma'(t)}X
$$

$$
= B(\gamma'(t), X(\gamma(t)))
$$

$$
= B(\gamma'(t), V(t))
$$

Proposition 4.2. Let $f : (M, g) \to (\widetilde{M}, \widetilde{g})$ be an isometric immersion. Then f is geodesic at $p \in M$ if and only if:

 $\forall \gamma : (-\epsilon, \epsilon) \to M$ geodesic in (M, g) such that $\gamma(0) = p$, $\widetilde{\gamma} = f \circ \gamma : (-\epsilon, \epsilon) \to \widetilde{M}$ is geodesic at D. Proof:

$$
(f \circ \gamma)'(t) = df_{\gamma}(t)(\gamma'(t))
$$

And then by lemma [4.1](#page-29-1) we know:

$$
\frac{\tilde{D}}{dt}\tilde{V}(t) = \frac{D}{dt}V(t) + B(\gamma'(t), V(t))
$$

 (\implies)

- 1. f is geodesic at $\gamma(0) = p \in M \implies B(\gamma'(0), \gamma'(0)) = 0$
- 2. $\gamma(t)$ is a geodesic $\implies \frac{D}{dt}\gamma'(t) = 0$

And then from these two statements along with the lemma, we immediately see:

$$
\frac{D}{dt}\widetilde{\gamma}'(0) = 0 \iff \widetilde{\gamma} = f \circ \gamma \text{ is a geodesic at } 0
$$

 $($ \Longleftarrow)

 $\forall x, y \in T_pM$, we have $B(p)(x, y) = 0$. Since B is symmetric and bilinear, it suffices to show that for any $v \in T_p M$, $B(p)(v, v) = 0$.

We know that $\exists \epsilon > 0$ such that $\gamma(t) = \exp_p(tv)$ is defined.

 $\gamma : (-\epsilon, \epsilon) \to M$ is a geodesic in (M, g) , with $\gamma(0) = p$ and $\gamma'(0) = v$.

This implies $\frac{D}{dt}\tilde{\gamma}'(0) = 0$, so that:

$$
\frac{\tilde{D}}{dt}\tilde{\gamma}'(0) = \frac{D}{dt}\gamma'(0) + B(p)(\gamma'(0), \gamma'(0)) = \frac{D}{dt}\gamma'(0) + B(p)(v, v) = 0 \implies B(p)(v, v) = 0
$$

 \Box

If f is totally geodesic, then $B(\gamma'(t), \gamma'(t)) = 0$ which implies that:

- $\widetilde{\gamma}$ is a geodesic in $(\widetilde{M}, \widetilde{q})$
- $\widetilde{\gamma} = \widetilde{\exp}_f(p)(tdf_p(v))$
- $\widetilde{\gamma} = f \circ \exp_p(tv)$

And we can see that:

$$
f \circ \exp_p(tv) = \widetilde{\exp}_f(p) \circ df_p : B_{\epsilon}(0) \to \widetilde{M}
$$

4.1 Examples of Totally Geodesic Isometric Embeddings

$$
(\mathbb{R}^n, dx_1^2 + \dots + dx_n^2) \hookrightarrow (\mathbb{R}^{n+k}, dx_1^2 + \dots + dx_{n+k}^2)
$$

$$
(x_1, \dots, x_n) \mapsto (x_1, \dots, x_n, 0, \dots, 0)
$$

$$
(S^{n-1}, g_{can}) \hookrightarrow (\mathbb{R}^{n+k-1}, g_{can})
$$

\n
$$
(x_1, \dots, x_n) \mapsto (x_1, \dots, x_n, 0, \dots, 0)
$$

\n
$$
x_1^2 + \dots + x_n^2 = 1
$$

Let (M, g) be a Riemannian manifold, and $p \in M$.

$$
\exists \epsilon > 0 \quad \exp_p : B_{\epsilon}(0) \to B_{\epsilon}(p)
$$

Is a geodesic ball centered at p with radius $\epsilon > 0$, and $B_{\epsilon}(0) \subset T_pM$, $B_{\epsilon}(p) \subset M$.

Now let $\sigma \subset T_pM$ be a 2-plane.

 $S = \exp_p(\sigma \cap B_\epsilon(0))$ is a 2 dimensional Riemannian submanifold of (M, g) . Additionally, S is geodesic at p. Notice as well that:

$$
K(p, \sigma) = K_S(p)
$$

where $K(p, \sigma)$ is the sectional curvature of (M, g) and $K_S \in C^{\infty}(S)$ is the scalar curvature of S.

5 Curvature

5.1 Mean Curvature

Let $f:(M,g)\to(\tilde{M},\tilde{g})$ be an isometric immersion, $p\in M$, and $\eta\in(T_pM)^{\perp}$ such that $\langle\eta,\eta\rangle=1$ Then the *mean curvature* of f at p along η is given by:

$$
h_\eta := \frac{1}{n}\operatorname{Tr}(S_\eta)
$$

where $n = \dim M$, and S_{η} is the shape operator of f at p along η . Remember that $S_{\eta}: T_pM \to T_pM$ is self-adjoint.

Also let e_1, \ldots, e_n be an orthonormal basis of T_pM . Then we have:

$$
S_{\eta}(e_i) = \sum_j A_{ij} e_j
$$

$$
A_{ij} = \langle S_{\eta}(e_i), e_j \rangle = \langle e_i, S_{\eta}(e_j) \rangle = A_{ji}
$$

From this definition, we know that $\exists U \in O(n)$ such that:

$$
A = U^{-1} \begin{pmatrix} \lambda_1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \lambda_n \end{pmatrix} U = U^T \begin{pmatrix} \lambda_1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \lambda_n \end{pmatrix} U \qquad \lambda_1, \ldots, \lambda_n \in \mathbb{R}
$$

Then there exists an orthonormal basis $\tilde{e}_1, \ldots, \tilde{e}_n$ of T_pM such that:

$$
S_{\eta}(\widetilde{e}_i) = \lambda_i \widetilde{e}_i
$$

$$
\text{Tr}(S_{\eta}) = \sum_{i=1}^n A_{ii} = \sum_{i=1}^n \lambda_i
$$

Then from here, choose an orthonormal basis E_1, \ldots, E_k of $(T_pM)^{\perp}$ where $k = \dim M - \dim M$ Then the *mean curvature vector* of f at p is given by:

$$
\vec{H}(p) := \sum_{\alpha=1}^{k} h_{E_{\alpha}} E_{\alpha} = \frac{1}{n} \sum_{\alpha=1}^{k} \sum_{i=1}^{n} \langle B(e_i, e_i), E_{\alpha} \rangle = \frac{1}{n} \sum_{i=1}^{n} B(e_i, e_i) \in (T_p M)^{\perp}
$$

Notice that this expression is independent of choice of basis for $\{E_{\alpha}\}_{\alpha=1}^{k}$ and $\{e_{i}\}_{i=1}^{n}$. So $\vec{H} \in (T_pM)^{\perp}$ is the *mean curvature vector* of the isometric immersion $f : (M, g) \to (\widetilde{M}, \widetilde{g})$ We say that the isometric immersion f is minimal at p if $\vec{H}(p) = 0$.

Example 5.1. The mean curvature vector of $f : (S^n, g_{can}) \hookrightarrow (\mathbb{R}^{n+1}, g_0)$ is $\vec{H} = h_{\eta} \eta$, where η is the inward unit normal.

$$
\forall p \in M \quad h_{\eta}(p) = \frac{1}{n} \operatorname{Tr}(S_{\eta}(p)) = \frac{1}{n} \operatorname{Tr}(id_{T_p S^n}) = 1
$$

So $\vec{H} = \eta$

5.2 Hypersurface Example

Let $f : (M, g) \to (\widetilde{M}^{n+1}, \widetilde{g})$ be an isometric embedding, with $\eta \in \mathfrak{X}(M)^{\perp}$ being the unit normal vector field.
This oxists if and only if $N(f)$ is trivial This exists if and only if $N(f)$ is trivial.

Then with $S_{\eta}(p)$ being the self adjoint operator defined above, and taking an orthonormal basis $\{e_i\}_{i=1}^n$ of T_pM , we recall that $S_n(e_i) = \lambda_i e_i$

Then the eigenvalues $\lambda_1, \ldots, \lambda_n$ are principal curvatures of f at p. Also, the eigenvectors e_1, \ldots, e_n are principal directions of f at p .

Define some symmetric functions on λ_i :

$$
\sigma_1 = \lambda_1 + \dots + \lambda_n
$$

$$
\sigma_2 = \sum_{i < j} \lambda_i \lambda_j
$$

$$
\vdots
$$

$$
\sigma_n = \lambda_1 \cdots \lambda_n
$$

Then $\sigma_2, \sigma_4, \ldots$ are invariants of the isometric embedding f. And also:

> $h_{\eta} = \frac{1}{n}(\lambda_1 + \ldots + \lambda_n)$ is the mean curvature. $\det(S_n) = \lambda_1 \cdots \lambda_n$ is the Gauss-Kronecker curvature

Special Case:

Let M^2 be a 2 dimensional Riemannian manifold isometrically embedded into $(\mathbb{R}^3, dx^2 + dy^2 + dz^2)$. For $p \in M$, $\eta \in (T_pM)^{\perp}$, there exists an orthonormal basis e_1, \ldots, e_n on T_pM such that:

$$
S_{\eta}(e_i) = \lambda_i e_i
$$

$$
B(e_i, e_j) = \lambda_i \delta_{ij} \eta
$$

Then we also have:

$$
\mathbb{K}(p) = \det(S_{\eta}) = \lambda_1 \lambda_2 \quad \text{is the Gaussian curvature}
$$

$$
K(p) = \widetilde{K}(p) + \langle B(e_1, e_1), B(e_2, e_2) \rangle - |B(e_1, e_2)|^2
$$

$$
= 0 + \langle \lambda_1 \eta, \lambda_2 \eta \rangle - 0 = \lambda_1 \lambda_2 = \mathbb{K}(p)
$$

Theorem 5.1. Gauss Theorema Egregium:

The Guassian curvature of a 2 dimensional Riemannian manifold is an intrinsic invariant. More generally, the Gauss-Kronecker curvature of an isometric embedding $M^{2n} \hookrightarrow \mathbb{R}^{2n+1}$ is an intrinsic invariant.

5.3 Gauss Map

Let $M^n \hookrightarrow (\mathbb{R}^{n+1}, g_0 = dx_1^2 + \ldots + dx_{n+1}^2)$

Suppose that there exists $N \in \mathfrak{X}(M)$ unit normal vector field $\forall p \in M^n$.

$$
N(p) \in (T_p M)^{\perp} \subset T_p \mathbb{R}^{n+1} = \mathbb{R}^{n+1}
$$
 $|N(p)| = 1$

Then we obtain a C^{∞} map $N: M^n \to S^n$, known as the *Gauss Map* of the isometric embedding $M^n \to$ $(\mathbb{R}^{n+1}, g_0).$

$$
dN_p:T_pM\to T_{N(p)}S^n
$$

Where $T_p M = \{ v \in \mathbb{R}^{n+1} \mid \langle N(p), v \rangle = 0 \} = T_{N(p)} S^n$ And then we have:

$$
\forall v \in T_p M \quad S_{N(p)}(v) = -D_v N = -dN_p(v)
$$

where D is the pullback connection of the Levi-Civita connection $\tilde{\nabla}$ of (\mathbb{R}^{n+1}, g_0) . Then from this, we see that if $x, y \in T_pM$, the second fundamental form:

$$
H_{N(p)}(x,y) = \langle S_{N(p)}(x), y \rangle = -\langle dN_p(x), y \rangle
$$

$$
\begin{array}{ccc}\nU \subset M & \xrightarrow{\smile} & \mathbb{R}^{n+1} \\
\varphi & & \\
V \subset \mathbb{R}^n\n\end{array}
$$

$$
\mathbb{X}(\vec{u}) = \phi^{-1}(\vec{u}) = (X_1(\vec{u}), \dots, X_{n+1}(\vec{u})) \in M \subset \mathbb{R}^{n+1}
$$

$$
\mathbb{N}(\vec{u}) = N(\mathbb{X}(\vec{u})) = (N_1(\vec{u}), \dots, N_{n+1}(\vec{u})) \in S^n \subset \mathbb{R}^{n+1}
$$

 $\mathbb{X}: V \to \mathbb{R}^{n+1}$ C^{∞} embedding $\mathbb{N}: V \to \mathbb{R}^{n+1}$ C^{∞} map

$$
dN_p\left(\frac{\partial \mathbb{X}}{\partial u_i}\right)=\frac{\partial \mathbb{N}}{\partial u_i}
$$

Let (u_1, \ldots, u_n) be a local coordinate system on $U = \mathbb{X}(V) \subset M$. Then we have:

$$
H_N = \sum_{i,j} h_{ij} du_i du_j \quad \text{where } h_{ij} = \langle \mathbb{X}_{ij}, N \rangle = -\langle \mathbb{X}_i, N_j \rangle
$$

$$
g = \sum_{i,j} g_{ij} du_i du_j \quad \text{where } g_{ij} = \langle \mathbb{X}_i, \mathbb{X}_j \rangle
$$

5.4 Example:

Consider the surface of revolution obtained by rotating $y = \cosh(z)$ in the yz-plane about the z-axis. The parameterization is given by:

$$
\mathbb{X}: [0, 2\pi] \times \mathbb{R} \to \mathbb{R}^3
$$

$$
\mathbb{X}(u, v) = (\cosh(v)\cos(u), \cosh(v)\sin(u), v)
$$

Then first compute the partial derivatives:

$$
\mathbb{X}_u = (-\cosh(v)\sin(u), \cosh(v)\cos(u), 0)
$$

$$
\mathbb{X}_v = (\sinh(v)\cos(u), \sinh(v)\sin(u), 1)
$$

Which allows us to solve for the components of the metric by leveraging the fact that $g_{ij} = \langle \mathbb{X}_i, \mathbb{X}_j \rangle$:

$$
g_{11} = \langle \mathbb{X}_u, \mathbb{X}_u \rangle = \cosh^2(v)
$$

\n
$$
g_{12} = \langle \mathbb{X}_u, \mathbb{X}_v \rangle = 0
$$

\n
$$
g_{22} = \langle \mathbb{X}_v, \mathbb{X}_v \rangle = \cosh^2(v)
$$

So that $g = (\cosh^2(v))(du^2 + dv^2)$

Now to solve for the unit normal vector field $\mathbb{N} = \frac{\mathbb{X}_u \times \mathbb{X}_v}{|\mathbb{X}_u \times \mathbb{X}_v|}$, we have:

$$
\mathbb{X}_{u} \times \mathbb{X}_{v} = \cosh(v) \langle \cos(u), \sin(u), -\sinh(v) \rangle
$$

$$
\mathbb{N} = \frac{\mathbb{X}_{u} \times \mathbb{X}_{v}}{|\mathbb{X}_{u} \times \mathbb{X}_{v}|} = \frac{\langle \cos(u), \sin(u), -\sinh(v) \rangle}{\cosh(v)}
$$

And we can also compute the partial derivatives of N:

$$
N_u = \frac{\langle -\sin(u), \cos(u), 0 \rangle}{\cosh(v)} = \frac{1}{\cosh^2(v)} \mathbb{X}_u
$$

\n
$$
N_v = \frac{\langle 0, 0, -\cosh(v) \rangle \cosh(v) - \langle \cos(u), \sin(u), -\sinh(v) \rangle \sinh(v)}{\cosh^2(v)} = \frac{-1}{\cosh^2(v)} \mathbb{X}_v
$$

Which shows that:

$$
S_N = -dN = \frac{1}{\cosh^2(v)} \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}
$$
 with respect to the basis $\frac{\partial}{\partial u}, \frac{\partial}{\partial v}$

Principal Curvatures:
$$
\lambda_1 = -\frac{1}{\cosh^2(v)}, \lambda_2 = \frac{1}{\cosh^2(v)}
$$

Principal Directions: $e_1 = \frac{1}{\cosh(v)} \frac{\partial}{\partial u}, e_2 = \frac{1}{\cosh(v)} \frac{\partial}{\partial v}$
Mean Curvature: $h_N = \frac{1}{2}(\lambda_1 + \lambda_2) = 0$
Gaussian Curvature: $K = \lambda_1 \lambda_2 = -\frac{1}{\cosh^4(v)}$

Now to solve for $H_N = h_{11} du^2 + 2h_{12} du dv + h_{22} dv^2$, we have:

$$
h_{11} = -\langle \mathbb{X}_u, \mathbb{N}_u \rangle = -\frac{1}{\cosh^2(v)} \langle \mathbb{X}_u, \mathbb{X}_u \rangle = -1
$$

$$
h_{12} = -\langle \mathbb{X}_u, \mathbb{N}_v \rangle = -\frac{1}{\cosh^2(v)} \langle \mathbb{X}_u, \mathbb{X}_v \rangle = 0
$$

$$
h_{22} = -\langle \mathbb{X}_v, \mathbb{N}_v \rangle = \frac{1}{\cosh^2(v)} \langle \mathbb{X}_v, \mathbb{X}_v \rangle = 1
$$

Which gives us: $H_N = -du^2 + dv^2$

So $S \subset \mathbb{R}^3$ is a minimal surface, not totally geodesic. Now let's compute the sectional curvature $K = \frac{R_{1212}}{g_{11}g_{22}-g_{12}^2}$: Recall that the metric is as follows:

$$
g_{11} = \cosh^2(v)
$$
 $g^{11} = \frac{1}{\cosh^2(v)}$
 $g_{22} = \cosh^2(v)$ $g^{22} = \frac{1}{\cosh^2(v)}$

$$
\Gamma_{11}^{1} = \frac{1}{2}g^{11}\left(\frac{\partial g_{11}}{\partial u} - \frac{\partial g_{11}}{\partial u} + \frac{\partial g_{11}}{\partial u}\right) = 0
$$

\n
$$
\Gamma_{11}^{2} = \frac{1}{2}g^{22}\left(\frac{\partial g_{12}}{\partial u} + \frac{\partial g_{21}}{\partial u} - \frac{\partial g_{11}}{\partial v}\right) = -\frac{1}{2}g^{22}\left(\frac{\partial}{\partial v}g_{11}\right)
$$

\n
$$
= -\frac{1}{2\cosh^{2}(v)}\left(\frac{\partial}{\partial v}\cosh^{2}(v)\right) = -\frac{1}{2\cosh^{2}(v)}(2\cosh(v)\sinh(v)) = -\tanh(v)
$$

Which implies that:

$$
\nabla_{\frac{\partial}{\partial u}}\left(\frac{\partial}{\partial u}\right) = -\tanh(v)\frac{\partial}{\partial v}
$$

And then:

$$
\Gamma_{12}^1 = \Gamma_{21}^1 = \frac{1}{2} g^{11} \left(\frac{\partial}{\partial v} g_{11} \right) = \tanh(v)
$$

$$
\Gamma_{12}^2 = \Gamma_{21}^2 = \frac{1}{2} g^{22} \left(\frac{\partial}{\partial u} g_{22} \right) = 0
$$

Which implies:

$$
\nabla_{\frac{\partial}{\partial u}}\left(\frac{\partial}{\partial v}\right) = \nabla_{\frac{\partial}{\partial v}}\left(\frac{\partial}{\partial u}\right) = \tanh(v)\frac{\partial}{\partial u}
$$

And finally:

$$
\Gamma_{22}^1 = \frac{1}{2} g^{11} \left(\frac{\partial}{\partial u} g_{22} \right) = 0
$$

$$
\Gamma_{22}^2 = \frac{1}{2} g^{22} \left(\frac{\partial}{\partial v} g_{22} \right) = \tanh(v)
$$

Which gives:

$$
\nabla_{\frac{\partial}{\partial v}}\left(\frac{\partial}{\partial v}\right) = \tanh(v)\frac{\partial}{\partial v}
$$

Now using these results, we can compute $R_{\rm 1212}$ as:

$$
R_{1212} = \langle \nabla_v \nabla_u \partial_u - \nabla_u \nabla_v \partial_u, \partial_v \rangle
$$

\n
$$
= \langle \nabla_v (-\tanh(v)\partial_v) - \nabla_u (\tanh(v)\partial_u), \partial_v \rangle
$$

\n
$$
= \langle -\partial_v (\tanh(v))\partial_v - \tanh^2(v)\partial_v + \tanh^2(v)\partial_v, \partial_v \rangle
$$

\n
$$
= -\frac{1}{\cosh^2(v)} \langle \partial_v, \partial_v \rangle
$$

\n
$$
= -1
$$

So that we finally achieve the final result:

$$
K = \frac{R_{1212}}{g_{11}g_{22} - g_{12}^2} = \frac{-1}{\cosh^4(v)}
$$

To summarize all of the information we have learned about this manifold:

 \Box

6 Complete Manifolds

From now on, let's assume that the underlying topological space of M is both Haussdorf and second countable.

6.1 Hadamard Theorem

Theorem 6.1. (Hadamard Theorem)

Let (M, g) be a complete Riemannian manifold, simply connected, and with sectional curvature $K(p, \sigma) \leq 0$, for all $p \in M$, and for all $\sigma \subset T_pM$. Then M is diffeomorphic to \mathbb{R}^n . More precisely, $\exp_p: T_pM \to M$ is a diffeomorphism for all $p \in M$.

6.2 Metric Spaces on Manifolds

Let (M, g) be a connected Riemannian manifold. Then for all $p, q \in M$, we define the *distance* between p and q to be:

 $d_q(p,q) = \inf \{ \ell(c) \mid c : [0,1] \to M \text{ is a piecewise smooth curve with } c(0) = p, c(1) = q \}$

Which by definition implies that $0 \leq d_q(p,q) < \infty$. From now on, assume the metric g is fixed, so we can simply write $d(p, q)$.

Proposition 6.1. (M, d) is a metric space.

Proof:

By definition, we need to check the following properties:

- (1) (Triangle Inequality) $d(p, r) \leq d(p, q) + d(q, r)$
- (2) (Symmetry) $d(p, q) = d(q, p)$
- (3) $d(p, q) \ge 0$
- (4) $d(p,q) = 0 \iff p = q$

Notice that (1), (2), and (3) are obvious from the definition of $d(p, q)$. So we only need to prove (4).

If $p = q$, then it is also very clear to see that $d(p, q)$ must equal 0.

Now, suppose that $d(p, q) = 0$. We want to show that if $p \neq q$, then $d(p, q) > 0$, which will immediately imply the result.

Since M is Hausdorff, we know that there must exist an open neighborhood U of $p \in M$ such that $q \notin U$ for some $\epsilon > 0$. Moreover, we can choose U to be a normal neighborhood of p. Now, let $B = B_{\epsilon}(p)$ be a geodesic ball of radius $\epsilon > 0$ centered at $p \in M$, such that $\overline{B} \subset U$. Also let $\gamma : [0,1] \to B$ be a geodesic line segment with $\gamma(0) = p$. Then if $c : [0, 1] \to M$ is a piecewise smooth curve with $c(0) = \gamma(0) = p$, $c(1) = \gamma(1)$, we know from do Carmo that this implies $\ell(\gamma) \leq \ell(c)$.

In the case when these lengths are equal, we must have that $c([0, 1]) = \gamma([0, 1]).$

From this it is easily concluded that $d(p, q) \ge r > 0$, which completes the proof.

Remark:

A non-Hausdorff space is not metrizable. For example, consider the line with two origins which is defined as the image of the map π . The equivalence relation \sim is defined by $(x, 0) \sim (x, 1)$ for all $x \neq 0$.

$$
\pi: \mathbb{R} \times \{0, 1\} \to M = (\mathbb{R} \times \{0, 1\}) / \sim
$$

 $\Box.$

And notice that $d((0,0), (0, 1)) = 0$, but $(0, 0) \neq (0, 1)$. Therefore, d is not a metric. Also notice that if we fix $p_0 \in M$, then the function

$$
f: M \to \mathbb{R}
$$

$$
p \mapsto d(p_0, p)
$$

is a continuous function.

$$
|f(p) - f(q)| = |d(p_0, p) - d(p_0, q)| \le d(p, q)
$$

So that $f : (M, d) \to (\mathbb{R}, ||)$ is Lipschitz continuous.

Definition 6.2. (Geodesic Completeness)

A Riemannian manifold (M, g) is *geodesically complete* if for any $p \in M$, the exponential map $\exp_p(v)$ is defined for all $v \in T_pM$, i.e., every geodesic $\gamma(t)$ is defined for all $t \in \mathbb{R}$.

Theorem 6.2. (Hopf-Rinow Theorem)

If (M, g) is a connected Riemannian manifold, and $p \in M$, define a metric d (in the sense of point set topology)on M as above. Then for the following statements:

- (a) \exp_p is defined on T_pM
- (b) Closed and bounded sets of (M, d) are compact
- (c) (M, d) is a complete metric space
- (d) (M, g) is geodesically complete

(e) ∃ compact sents $K_n \subset M$, with $K_n \subset K_{n+1}$, with $\bigcup_{n=1}^{\infty}$ $n=1$ $K_n = M$ such that $q_n \notin K_n \implies d(p, q_n) \to \infty$

(f) $\forall q \in M$ there exists a minimizing geodesic $\gamma : [0, 1] \to M$ with $\gamma(0) = p$, $\gamma(1) = q$

We have $(a) \iff (b) \iff (c) \iff (d) \iff (e) \implies (f)$.

Corollary 6.3. If M is a compact C^{∞} manifold, then for any Riemannian metric g on M, (M, g) is geodesically complete.

But more generally, if we have an open embedding $M \stackrel{i}{\hookrightarrow} M'$ such that $i(M) \subset M'$ is a proper subset i.e., $i(M) \neq M'$, and (M', g') is a Riemannian manifold, then (M, i^*g) is not geodesically complete.

Definition 6.4. (Extendible Manifolds)

A connected Riemannian manifold (M, g) is said to be *extendible* if there exists a connected Riemannian manifold (M', g') such that $i : M \hookrightarrow M'$ is an open embedding, and:

$$
i(M) \stackrel{\text{open}}{\subset} M'
$$
 and $i(M) \neq M'$ $i^*g' = g$

 $Remark: Compact \implies Complete \implies Non-Extendible$

Corollary 6.5. (Corollary of Hopf-Rinow)

Suppose that (M, g) is a connected complete Riemannian manifold. Let N be a closed submanifold of M, and $i : N \hookrightarrow M$ be an inclusion. Then:

 $(N, i[*]g)$ is a complete Riemannian manifold.

6.3 Conjugate Points & Poles

Let (M, g) be a Riemannian manifold, and $\gamma : [0, a] \to M$ be a geodesic.

Choose $t_0 \in [0, a]$. We say that $\gamma(t_0)$ is *conjugate* to $\gamma(0)$ along γ if there is a Jacobi field J along γ such that $J(0) = J(t_0) = 0$, and J is not identically 0.

Let $\gamma'(0) = v \neq 0 \implies \gamma(t) = \exp_p(tv)$. Then:

$$
J(0) = 0, \quad J'(0) = w \neq 0 \implies J(t) = (d \exp_p)_{tv}(tw)
$$

Define the *multiplicity* of $\gamma(t_0)$ to be:

$$
m(\gamma(t_0)) = \dim\{J \mid J \text{ is a Jacobi field along } \gamma, J(0) = J(t_0) = 0\}
$$

$$
= \dim\{w \in T_p M \mid (d \exp_p)_{t_0 v}(t_0 w) = 0\}
$$

$$
= \dim\{\ker(d \exp_p)_{t_0 v}\}
$$

From the Gauss Lemma, we know that $|(d \exp_p)_{t_0v}(v)| = |v| \neq 0$, which means that $v \notin \text{ker}((d \exp_p)_{t_0v})$. Because of this, we must have:

$$
0 \le \dim \ker((d \exp_p)_{t_0 v}) \le n - 1
$$

From this, we can also reformulate the statement as follows:

 $\gamma(t_0)$ is conjugate to $\gamma(0)$ along $\gamma \iff t_0v$ is a critical point of \exp_p

Definition 6.6. (Conjugacy Locus)

The conjugacy locus of $p \in M$ is the set of all (first) conjugate points along all geodesics $\gamma(t)$ in M with $\gamma(0) = p$. This set is denoted $C(p)$.

Definition 6.7. (Poles)

Let (M, g) be a connected complete Riemannian manifold. We say that $p \in M$ is a pole if $C(p) = \emptyset$.

This is also equivalent to the following statements:

- $\forall v \in T_pM \quad (d \exp_p)_v : T_v(T_pM) \to T_{\exp_p(v)}M$ is a linear isomorphism.
- $\exp_p: T_pM \to M$ is a local diffeomorphism.

Intuitively, a pole is a point from which all geodesics emanate without conjugate points. In other words, a pole is a point from which all geodesics are minimizing. This means that the existence of a pole on a manifold (M, g) implies that it is possible to define a global coordinate system.

Lemma 6.3. Suppose that (M, g) is a connected complete Riemannian manifold, with constant sectional curvature $K \leq 0$. Then this implies $\forall p \in M$, p is a pole.

For this lemma, we define an arbitrary geodesic $\gamma : [0, \infty) \to M$, and impose the condition $\gamma(0) = p$.

Proof:

Let J be a Jacobi field along γ such that $J(0) = 0$ and $J'(0) \neq 0$. We want to prove that $J(t) \neq 0$ for $t \in (0,\infty)$. First, let's calculate $\langle J, J \rangle$ ":

$$
\langle J, J \rangle^{\prime\prime} = (\langle J', J \rangle + \langle J, J' \rangle)^{\prime}
$$

= $(2\langle J', J \rangle)^{\prime}$
= $2\langle J'', J \rangle + 2\langle J', J' \rangle$
= $2|J'(t)|^2 - 2\langle (R(J, \gamma')\gamma', J) \rangle$

And recall from the definition of sectional curvature that

$$
K(u, v) = \frac{\langle R(u, v)v, u \rangle}{|u|^2 |v|^2 - \langle u, v \rangle^2} \implies \langle R(u, v)v, u \rangle = K(|u|^2 |v|^2 - \langle u, v \rangle^2)
$$

So that plugging this in, along with remembering that γ is orthogonal to J, implying $\langle J, \gamma' \rangle = 0$, we get:

$$
\langle J, J \rangle^{\prime\prime} = 2|J'(t)|^2 - 2K(J, \gamma')(|J|^2|\gamma'|^2)
$$

But notice that we assumed that $K \leq 0$. This means that the expression can be rewritten as:

$$
\langle J, J \rangle'' = 2|J'(t)|^2 + 2\alpha |J(t)|^2 |\gamma'(t)|^2 \ge 0
$$

where $\alpha=-K\geq 0.$

From this, we can conclude that $\langle J, J \rangle'$ is a non-decreasing function.

Now take $0 < t_1 < t_2$. Then by the fact that $\langle J, J \rangle'$ is non-decreasing, we have:

$$
\langle J, J \rangle'(t_2) \ge \langle J, J \rangle'(t_1) \ge \langle J, J \rangle'(0) = 2\langle J'(0), J(0) \rangle = 2\langle J'(0), 0 \rangle = 0
$$

Which then implies $\langle J, J \rangle = |J(t)|^2$ is also non decreasing.

But:

$$
J(0) = 0, J'(0) \neq 0
$$

\n
$$
\implies \exists \delta > 0 \text{ such that } J(t) \neq 0 \text{ for } t \in (0, \delta)
$$

\n
$$
\implies |J(t)|^2 > 0 \text{ for } t \in (0, \delta)
$$

\n
$$
\implies |J(t)|^2 > 0 \text{ for } t \in (0, \infty)
$$

But this means that $J(t)$ can never equal zero again, since $J(t)$ is a strictly positive function. Therefore, the conjugacy locus (Definition. 6.6). Then by definition 6.7 , we see that the conjugate locus being empty means p is a pole.

Since p was an arbitrary point in the manifold M , we have shown that every point in M is a pole.

 $\Box.$

Lemma 6.4. Let (M, g) be a connected complete Riemannian manifold. Also let (N, h) be a Riemannian manifold.

If $f: M \to N$ is a surjective local diffeomorphism $(\implies N$ connected), then $\forall p \in M$, and $\forall v \in T_pM$, we have that $||df_p(v)||_{f(p)} \ge ||v||_p \implies f$ is a covering map.

Proof:

It suffices to show that $f : (M, g)$ complete \rightarrow (N, h) is a surjective local diffeomorphism.

Or that $|| (df_p)(v) || \ge ||v||$ has the path lifting property:

Claim

(1): If $\bar{c} : [0, t_0] \to M \quad 0 \le t_0 < 1, \quad f \circ \bar{c} = c$

 $\implies \exists \delta > 0$ such that \bar{c} is defined on $[0, t_0 + \delta]$ and $f \circ \bar{c} = c$.

(2): If \bar{c} is defined on $[0, t_0)$, $0 < t_0 \leq 1$, $f \circ \bar{c} = c$, then \bar{c} is defined at t_0 .

Proof of (1):

We know that there must exist an open neighborhood V of $\bar{c}(t_0)$ in M such that $f|_V : V \subset M \to f(V) \subset N$ is a diffeomorphism.

 \Box

This means that $f(V)$ is an open neighborhood of $c(t_0) = f \circ \bar{c}(t_0)$ in N.

Which implies that $\exists \delta > 0$ such that $|t - t_0| < \delta \implies c(t) \in f(V)$

Then define $\bar{c}(t) := (f|_V)^{-1}(c(t))$ for $t \in [t_0 - \delta, t_0 + \delta]$, so that $f \circ \bar{c}(t) = c(t) \quad t \in [0, t_0 + \delta)$

And we have arrived at our result. Note that we only used the fact that f is a diffeomorphism.

Proof of (2): $\exists \{t_n\} \subset [0, t_0)$ $t_n < t_{n+1}$ $\lim_{n \to \infty} t_n = t_0$

Now choose $m < n$ so that:

$$
d_M(\bar{c}(t_m), \bar{c}(t_n)) \leq \ell(\bar{c}|_{[t_m, t_n]}) = \int_{t_m}^{t_n} \left\| \frac{d\bar{c}}{dt}(t) \right\|_{\bar{c}(t)} dt
$$

$$
\leq \int_{t_m}^{t_n} \left\| df_{\bar{c}(t)} \left(\frac{d\bar{c}}{dt}(t) \right) \right\|_{\bar{c}(t)} dt
$$

$$
= \int_{t_m}^{t_n} \left\| \frac{d(f \circ \bar{c})}{dt}(t) \right\|_{c(t)} dt
$$

$$
\leq C(t_n - t_m)
$$

where $C = \max_{t \in [0,1]}$ $\biggl\| \biggr.$ $\frac{dc}{dt}(t)\bigg\| > 0$

 $\{\bar{c}(t_n)\}\$ is a Cauchy sequence in (M, d_M) which is a complete metric space. By the assumption that (M, g) is geometrically complete, and Hopf-Rinow (Theorem [6.2\)](#page-39-0),

 $\implies r \in M$ such that $\lim_{n \to \infty} \bar{c}(t_n) = r$

Define $\bar{c}(t_0) = r$. Then:

$$
f \circ \bar{c}(t_0) = f\left(\lim_{n \to \infty} \bar{c}(t_n)\right) = \lim_{n \to \infty} f \circ \bar{c}(t_n) = \lim_{n \to \infty} c(t_n) = c(t_0)
$$

Corollary 6.8. If (M, g) is a connected complete Riemannian manifold, and $p \in M$ is a pole, then the exponential map $\exp_p: T_pM \to M$ is a covering map.

If, in addition, M is simply connected, then $\exp_p: T_pM \to M$ is a diffeomorphism, which implies M is diffeomorphic to \mathbb{R}^n .

Proof:

By assumption, $\exp_p: T_pM \to M$ is a surjective local diffeomorphism. This implies that $g' = \exp_p^* g$ is a Riemannian metric on T_pM . This makes $\exp_p:(T_pM,g')\to (M,g)$ a local isometry.

By Lemma [6.4,](#page-41-0) it suffices to show that (T_pM, g') is complete.

$$
\forall v \in T_0(T_pM) \cong T_pM \quad \gamma(t) = \exp_p(tv), t \in \mathbb{R} \text{ is a geodesic in } (M, g)
$$

This implies that $\widetilde{\gamma}(t) = tv$, with $t \in \mathbb{R}$ is a geodesic in (T_pM, g')

Then by Hopf-Rinow (Theorem [6.2\)](#page-39-0), we have that (T_pM, g') is complete.

 \Box

 \Box

Notice that by this Theorem, as well as Lemma [6.3,](#page-40-3) we have:

Theorem 6.5. (Cartan-Hadamard Theorem)

Suppose that (M, g) is a connected complete Riemannian manifold with $K(p, \sigma) \leq 0 \quad \forall p \in M$. $\sigma \in$ $Gr(p, T_pM)$.

Then this implies that $\forall p \in M$, the map $\exp_p : T_pM \to M$ is a covering map.

In particular, if (M, g) is also simply connected, then $\forall p \in M$, the map $\exp_p: T_pM \to M$ is a diffeomorphism, which implies that M is diffeomorphic to \mathbb{R}^n .

7 Geodesics & Convex Neighborhoods

7.1 Geodesic Frame

Let (M, g) be a Riemannian manifold of dimension n, and $p \in M$, with $r > 0$ such that:

$$
\exp_p: B_r(0) \subset T_p M \to B_r(p) \subset M
$$

is a diffeomorphism.

Given any orthonormal basis of $(e_1(p),...,e_n(p))$ of T_pM , we define an orthonormal frame $(e_1,...,e_n)$ of $TM|_{B_r(p)} = TB_r(p)$ as follows:

 $\forall q \in B_r(p) \quad \exists! v \in T_pM \text{ such that } \exp_p(v) = q.$

Then $\gamma : [0,1] \to M$, with $\gamma(t) = \exp_p(tv)$ is a geodesic in (M, g) , such that $\gamma(0) = p$, $\gamma(1) = q$, and $\gamma'(0) = v.$

Let $V_i(t)$ be the unique parallel vector field along γ with the initial value $V_i(0) = e_i(p) \in T_pM$. Then we define:

$$
e_i(q) := V_i(1) \in T_q M
$$

Then:

- e_i is a C^{∞} vector field on $B_r(p)$
- $\langle e_i(q), e_i(q) \rangle = \delta_{ij} \quad \forall q \in B_r(p)$
- $(\nabla_{e_i} e_j)(p) = 0$

We call (e_1, \ldots, e_n) the *geodesic frame* of $TM|_{B_r(p)}$. It is determined uniquely by $(e_1(p), \ldots, e_n(p))$.

7.2 Theorem of Cartan

First, consider a local isometry $f : (M, g) \to (\widetilde{M}, \widetilde{g}).$

Then $\forall p \in M$, there exists $r > 0$ such that $f : B_r(p) \to B_r(\tilde{p})$ $(\tilde{p} = f(p))$ is an isometry.

 $i := df_p : T_pM \to T_{\widetilde{p}}\widetilde{M}$ is a linear isometry, or isomorphism of inner product spaces.

Where $f = \widetilde{\exp}_{\widetilde{p}} \circ i \circ (\exp_p)^{-1}$

Let $e_1(p), \ldots, e_n(p)$ be an orthonormal basis of T_pM . Then let $\tilde{e}_i(\tilde{p}) := i(e_i(p))$. With this definition, we have that $\tilde{e}_1(\tilde{p}), \ldots, \tilde{e}_n(\tilde{p})$ is an orthonormal basis of $T_{\tilde{p}}M$.

Now let e_1, \ldots, e_n and $\tilde{e}_i, \ldots, \tilde{e}_n$ be the geodesic frames on $U := B_r(p)$ and $U := B_r(\tilde{p})$, respectively. These are determined uniquely by $(e_1(p), \ldots, e_n(p)) \in T_pM$ and $(\tilde{e}_1(\tilde{p}), \ldots, \tilde{e}_n(\tilde{p})) \in T_{\tilde{p}}\tilde{M}$.

Where $df_q(e_j(q)) = \tilde{e}_j(\tilde{q}), q \in U, w \in T_qM = T_qU$. Now define the Riemann curvature tensor on both U and \tilde{U} to be:

$$
R_{ijk\ell} := R(e_i, e_j, e_k, e_\ell) \in C^\infty(U)
$$

$$
\widetilde{R}_{ijk\ell} := \widetilde{R}(\widetilde{e}_i, \widetilde{e}_j, \widetilde{e}_k, \widetilde{e}_\ell) \in C^\infty(\widetilde{U})
$$

Then we have that $R_{ijk\ell} = f^* \widetilde{R}_{ijk\ell}$, which implies that $\forall q \in U$, $R_{ijk\ell}(q) = \widetilde{R}_{ijk\ell}(f(q))$. This is true if and only if $\forall q \in U$, and $\forall x, y, u, v \in T_qM$,

$$
R(q)(x, y, u, v) = \widetilde{R}(f(q))(df_q(x), df_q(y), df_q(u), df_q(v))
$$

Theorem 7.1. (E. Cartan)

Let (M, g) and $(\widetilde{M}, \widetilde{g})$ be Riemannian manifolds of the same dimension. Also let $p \in M$ and $\widetilde{p} \in \widetilde{M}$.

$$
i: T_p M \to T_{\widetilde{p}} \widetilde{M} \ \text{ is a linear isometry.}
$$

Then $\exists r > 0$ such that $f := \widetilde{\exp}_{\widetilde{p}} \circ i \circ \exp_{p}^{-1} : U = B_r(p) \to \widetilde{U} = B_r(\widetilde{p})$ is a diffeomorphism. Let (e_1, \ldots, e_n) be a geodesic frame on $B_r(p)$, and $(\tilde{e}_1, \ldots, \tilde{e}_n)$ be a geodesic frame on $B_r(\tilde{p})$. Then $\widetilde{e}_i(p) = i(e_i(p))$

If
$$
R_{ijk\ell}(q) = \tilde{R}_{ijk\ell}(f(q)) \quad \forall q \in B_r(p)
$$
, then f is an isometry. (7.1)

Remark 7.2. For all $q \in U$, define a linear isomorphism

$$
\phi_q: T_qM \to T_{f(q)}M
$$

$$
\sum_{i=1}^n c_i e_i(q) \mapsto \sum_{i=1}^n c_i \widetilde{e}_i(f(q))
$$

Then ϕ_q is a linear isometry, and ϕ_q is determined by *i*.

Equation [7.1](#page-45-0) $\iff \forall q \in U, \forall x, y, u, v \in T_qM$, we have that:

$$
R(q)(x, y, u, v) = R(f(q))(\phi_q(x), \phi_q(y), \phi_q(u), \phi_q(v))
$$

And once we prove that f is an isometry, we immediately know that $\phi_q = df_q$.

Corollary 7.1. If (M, g) and $(\widetilde{M}, \widetilde{g})$ are Riemannian manifolds of the same dimension, and same constant sectional curvature K_0

Let $p \in M$ and $\widetilde{p} \in \widetilde{M}$ be any point, let $i : T_pM \to T_{\widetilde{p}}\widetilde{M}$ be any linear isometry.

Then there exists:

- an open neighborhood of V of $p \in M$
- an open neighborhood \widetilde{V} of $\widetilde{p} \in \widetilde{M}$
- an isometry $f: V \to \widetilde{V}$ such that $f(p) = \widetilde{p}$ and $df_p = i$

7.3 Conformal Deformation of Curvature

Suppose that g is a Riemannian metric on a manifold M, and let $\tilde{g} = e^{2f}g$ for any smooth function f on M.
Let ∇ and $\tilde{\nabla}$ be connections on (M, g) and (M, \tilde{g}) respectively. Let ∇ and ∇ be connections on (M, g) and (M, \tilde{g}) , respectively.

Then we have that for any C^{∞} vector fields $X, Y \in \mathfrak{X}(M)$

$$
\widetilde{\nabla}_X Y = \nabla_X Y + X(f)Y + Y(f)X - g(X, Y) \operatorname{grad}_g f
$$

We can prove this by assuming that $\tilde{\nabla}$ has the form $\tilde{\nabla}_X Y = \nabla_X Y + A(X, Y)$, where A is a symmetric bilinear tensor. Plugging this in, and applying some elementary definitions, we can arrive at the result.

In particular, if f is constant, so that $\tilde{g} = r^2 g$, then $\tilde{\nabla}_X Y = \nabla_X Y$, which implies the following:

$$
\widetilde{R}(X,Y)Z = R(X,Y)Z
$$

$$
\widetilde{R}(X,Y,Z,W) = r^2 R(X,Y,Z,W)
$$

$$
\widetilde{Ric} = Ric
$$

$$
\widetilde{S} = r^{-2}S
$$

Definition 7.2. Given two symmetric $(0, 2)$ -tensors S, and T on M, we can define the Kulkarni-Nomizu product of S and T to be the $(0, 4)$ -tensor $S \otimes T$ defined by:

$$
(S \bigotimes T)(X, Y, Z, W) = S(X, Z)T(Y, W) + S(Y, W)T(X, Z)
$$

$$
-S(X, W)T(Y, Z) - S(Y, Z)T(X, W)
$$

In particular:

$$
(S \bigotimes S)(X, Y, Z, W) = 2(S(X, Z)S(Y, W) - S(X, W)S(Y, Z))
$$

 (M, g) has constant sectional curvature $K_0 \iff R = \frac{1}{2}K_0 g \bigcirc g$ Lemma 7.3. For any $X, Y, Z, W \in \mathfrak{X}(M)$, we have:

$$
(S \bigotimes T)(X, Y, Z, W) = -(S \bigotimes T)(Y, X, Z, W)
$$

= -(S \bigotimes T)(X, Y, W, Z)
= (S \bigotimes T)(Z, W, X, Y)

i.e.,
$$
S \oslash T \in C^{\infty} (M, Sym^2 (\wedge^2 T^*M))
$$

Recall that $R \in C^{\infty} (M, Sym^2 (\wedge^2 T^*M))$. Therefore, we can prove that:
 $\widetilde{R} = e^{2f} (R - (Hess f) \oslash g + (df \otimes df) \oslash g - \frac{1}{2} |df|^2 g \oslash g)$

Where:

$$
\text{Hess}(f) = \sum_{ij} f_{,ij} dx_i dx_j
$$

$$
|df|^2 = \sum_{ij} g^{ij} f_{,i} f_{,j}
$$

7.4 Example: Hyperbolic Space

Recall that:

$$
\widetilde{R} = e^{2f} \left(R - (\text{Hess } f) \bigotimes g + (df \otimes df) \bigotimes g - \frac{1}{2} |df|^2 g \bigotimes g \right)
$$

Where \oslash is defined as in Definition [7.2.](#page-46-1)

7.4.1 Upper Half Space Model

Let $H^n = \{(y_1, \ldots, y_n) \in \mathbb{R}^n \mid y_n > 0\}$ And then define a metric \widetilde{g} on H^n by:

$$
\widetilde{g} = \frac{dy_1^2 + \dots + dy_n^2}{y_n^2} = e^{2f}g \quad g = dy_1^2 + \dots + dy_n^2
$$

Then:

$$
R = 0, \quad e^f = \frac{1}{y_n} \implies f = -\log y_n
$$

$$
f_i = \frac{\partial f}{\partial y_i} = -\delta_{in} \implies df = -\frac{dy_n}{y_n}
$$

$$
f_{ij} = \frac{\partial^2 f}{\partial y_i \partial y_j} = \delta_{in} \delta j n \implies \text{Hess } f = \sum_{ij} f_{ij} dy_i dy_j = \frac{dy_n^2}{y_n^2}
$$

$$
|df|^2 = \frac{1}{y_n^2} = e^{2f}
$$

$$
df \otimes df = \frac{dy_n^2}{y_n^2} = \text{Hess } f
$$

Therefore:

$$
\widetilde{R} = e^{2f} \left(R - (\text{Hess } f) \bigotimes g + (df \otimes df) \bigotimes g - \frac{1}{2} |df|^2 g \bigotimes g \right)
$$

\n
$$
= e^{2f} \left(0 - (\text{Hess } f) \bigotimes g + (\text{Hess } f) \bigotimes g - \frac{1}{2} |df|^2 g \bigotimes g \right)
$$

\n
$$
= -\frac{1}{2} e^{4f} g \bigotimes g
$$

\n
$$
= -\frac{1}{2} \widetilde{g} \bigotimes \widetilde{g}
$$

\n
$$
\implies (H^n, \widetilde{g}) \text{ has constant sectional curvature -1}
$$

7.4.2 Disk Model

Let $D^n = \{ \vec{u} = (u_1, \ldots, u_n) \in \mathbb{R}^n \mid |\vec{u}| < 1 \}$, which is the open unit ball in \mathbb{R}^n . Define a metric:

$$
\widetilde{g} = \frac{4}{(1 - |\vec{u}|^2)^2} \left(du_1^2 + \ldots + du_n^2 \right) = e^{2f}g \quad g = du_1^2 + \ldots + du_n^2
$$

So that:

$$
|\vec{u}| = \sqrt{u_1^2 + \dots + u_n^2}
$$

\n
$$
e^f = \frac{2}{1 - |\vec{u}|^2}
$$

\n
$$
f = \log\left(\frac{2}{1 - |\vec{u}|^2}\right)
$$

\n
$$
f_i = \frac{2u_i}{1 - |\vec{u}|^2}
$$

\n
$$
f_{ij} = \frac{2\delta_{ij}}{1 - |\vec{u}|^2} + \frac{4u_iu_j}{(1 - |\vec{u}|^2)^2}
$$

Using these equivalences, we can see that:

$$
df = \frac{2 \sum_{i} u_{i} du_{i}}{1 - |\vec{u}|^{2}}
$$

\n
$$
df \otimes df = \frac{4 \sum_{i,j} u_{i} u_{j} du_{i} du_{j}}{(1 - |\vec{u}|^{2})^{2}}
$$

\n
$$
Hess(f) = \sum_{i,j} f_{ij} du_{i} du_{j} = \frac{2 \sum_{i} du_{i}^{2}}{1 - |\vec{u}|^{2}} + \frac{4 \sum_{i,j} u_{i} du_{i} u_{j} du_{j}}{(1 - |\vec{u}|^{2})^{2}}
$$

\n
$$
|df|^{2} = \frac{4|\vec{u}|^{2}}{(1 - |\vec{u}|^{2})^{2}}
$$

And plugging all of this into the expression for $\widetilde{R},$ we can see that:

$$
\widetilde{R} = e^{2f} \left(R - (\text{Hess } f) \oslash g + (df \otimes df) \oslash g - \frac{1}{2} |df|^2 g \oslash g \right)
$$

\n
$$
= e^{2f} \left(0 - (\text{Hess } f) \oslash g + (df \otimes df) \oslash g - \frac{1}{2} |df|^2 g \oslash g \right)
$$

\n
$$
= e^{2f} \left((df \otimes df - \text{Hess } f) \oslash g - \frac{2 |\vec{u}|^2}{(1 - |\vec{u}|^2)^2} g \oslash g \right)
$$

\n
$$
= e^{2f} \frac{-2}{(1 - |\vec{u}|^2)^2} g \oslash g
$$

\n
$$
= -\frac{1}{2} e^{4f} g \oslash g
$$

\n
$$
= -\frac{1}{2} \widetilde{g} \oslash \widetilde{g}
$$

\n
$$
\implies (D^n, \widetilde{g}) \text{ has constant sectional curvature -1}
$$

From this, we can conclude that (D^n, h) and (H^n, g) are isometric, and have constant sectional curvature -1. **Proposition 7.3.** (D^n, h) is complete ($\iff (H^n, g)$ is complete) Proof:

By the Hopf-Rinow Theorem [\(6.2\)](#page-39-0), it suffices to show that \exp_0 is defined on T_0D^2 .

For all $A \in O(n)$, let's define a function:

$$
\phi_A: \mathbb{R}^n \to \mathbb{R}^n
$$

$$
\vec{u} \mapsto \vec{u}A
$$

So that the following holds:

$$
\phi_A^* u_i = \sum_{j=1}^n u_j A_{ji} \qquad \phi_A^* du_i = \sum_{j=1}^n du_j A_{ji}
$$

$$
\phi_A^* \left(\sum_{i=1}^n u_i^2 \right) = \sum_{i=1}^n u_i^2 \qquad \phi_A^* \left(\sum_{i=1}^n du_i^2 \right) = \sum_{i=1}^n du_i^2
$$

We also see that $\phi_A(D^n) = D^n$ and $\phi_A^* h = h$.

The differential:

$$
(d\phi_A)_{\vec{u}} : T_{\vec{u}}D^n \cong \mathbb{R}^n \to T_{\vec{u}A}D^n \cong \mathbb{R}^n
$$

$$
v \mapsto vA
$$

Also for all unit tangent vectors $\vec{v} \in T_0D^n$ there exists $A \in O(n)$, where $O(n)$ is the orthogonal group of $n \times n$ matrices such that $\vec{v}A = \frac{1}{2} \frac{\partial}{\partial u_1} \in T_0 D^n \cong \mathbb{R}^n = (\frac{1}{2}, 0, \dots, 0)$

It only remains to show that the normalized geodesic $\gamma(t)$ in (D^n, h) with $\gamma(0) = 0$, $\gamma'(0) = \frac{1}{2} \frac{\partial}{\partial u_1}$ is defined $\forall t \in \mathbb{R}.$

Let $\sigma: D^n \to D^n$ such that $\sigma(u_1, \ldots, u_n) = (u_1, -u_2, \ldots, -u_n)$

Then σ is an isometric involution on $(Dⁿ, h)$.

$$
(D^n)^{\sigma} = \{(u_1, 0, \dots, 0) \mid u_1 \in (-1, 1)\} = (-1, 1) \times \{(0, \dots, 0)\}
$$

It is then possible to prove that D^{σ} is a totally geodesic submanifold of (D^{n}, h) , and that the induced metric on $D^{\sigma} \cong (-1, 1)$ is $\frac{4du_1^2}{(1-u_1^2)^2}$.

Now define $\beta: (-1,1) \to (D^n)^{\sigma}$ by $\beta(t) = (t,0,\ldots,0)$. Also let t_0 be an arbitrary point in $(-1,1)$.

$$
s(t_0) := \ell(\beta|_{[0,t_0]})
$$

=
$$
\int_0^{t_0} |\beta'(t)|_h dt
$$

=
$$
\int_0^{t_0} \frac{2}{1-t^2} dt
$$

=
$$
\int_0^{t_0} \left(\frac{1}{1+t} + \frac{1}{1-t}\right) dt
$$

=
$$
\log\left(\frac{1+t_0}{1-t_0}\right)
$$

So from this, $s = \log(\frac{1+t}{1-t})$, meaning $e^s = \frac{1+t}{1-t}$

From this equality, with some simple rearranging, we see:

$$
\tanh\left(\frac{s}{2}\right) = \frac{e^{\frac{s}{2}} - e^{-\frac{s}{2}}}{e^{\frac{s}{2}} + e^{-\frac{s}{2}}} = \frac{e^{s} - 1}{e^{s} + 1} \\
= \frac{2t}{t} \\
= t
$$

So $\gamma(s) = (\tanh(\frac{s}{2}), 0, \ldots, 0)$ is a normalized geodesic in (D^n, h) with $\gamma(0) = 0, \gamma'(0) = \frac{1}{2} \frac{\partial}{\partial u_1}$. Therefore, we can determine the formula for the exponential map as:

$$
\exp_{\vec{0}}(\vec{a}) = \begin{cases} \vec{0} & \text{if } \vec{a} = \vec{0} \\ \tanh(|\vec{a}|) \frac{\vec{a}}{|\vec{a}|} & \text{if } \vec{a} \neq \vec{0} \end{cases}
$$

Which is obviously defined for all $\vec{a} \in T_0 D^n$.

7.5 Möbius transform

 $PSL(2, \mathbb{C}) \cong SL(2, \mathbb{C}) / \{ \pm (I_2) \}$ acts on $\mathbb{C} \cup \{ \infty \} = \mathbb{C} \mathbb{P}^1$.

$$
\begin{pmatrix} a & b \\ c & d \end{pmatrix} z = \frac{az+b}{cz+d}
$$

 $Aut(\mathbb{CP}^1) = \{ \phi : \mathbb{CP}^1 \to \mathbb{CP}^1 \mid \phi \text{ is biholomorphic} \} = \text{PSL}(2, \mathbb{C}) \supset \text{PSL}(2, \mathbb{R})$

Then by do Carmo [\[dC\]](#page-66-0) p.46, exercise 4, we have that $PSL(2, \mathbb{R})$ acts isometrically on $(H^2, \frac{dx^2+dy^2}{y^2})$

 \Box

8 Space Forms

Lemma 8.1. Let (M, g) and $(\widetilde{M}, \widetilde{g})$ be Riemannian manifolds, and M connected.

Suppose the functions:

$$
f_1, f_2 : (M, g) \to (\widetilde{M}, \widetilde{g})
$$

are local isometries.

Then if there exists a $p \in M$ such that:

$$
f_1(p) = f_2(p) = \widetilde{p} \in \widetilde{M}
$$

$$
df_1(p) = df_2(p) = i : T_pM \to T_{\widetilde{p}}\widetilde{M}
$$

Then $f_1 = f_2$.

Corollary 8.1. Let (M, g) be a connected Riemannian manifold, and G be a subgroup of Isom (M, g) = $\{\phi: M \to M \mid \phi \in C^{\infty}(M), \phi^*g = g\}$ such that:

- G acts transitively on M
- $p \in M$, and $G_p = \{\phi \in G \mid \phi(p) = p\} \to O(n)$ is a subgroup of G such that it maps the value $\phi \mapsto d\phi_p : T_pM \to T_pM.$

Then $G = \text{Isom}(M, g)$

We assume that $G_p \mapsto O(n)$ is a group isomorphism.

Example 8.1. $(\mathbb{R}^n, g_0 = dx_1^2 + \ldots + dx_n^2)$

Note that $O(n) \ltimes \mathbb{R}^n$ acts transitively and isometrically on (\mathbb{R}^n, g_0) .

 $(A, \vec{b})\vec{x} = A\vec{x} + \vec{b}$

Notice that the stabilizer of $\vec{0}$ is $O(n)$.

Therefore, by the corollary above, we have that $\text{Isom}(\mathbb{R}^n, g_0) = O(n) \ltimes \mathbb{R}^n$, which represents rigid motion. Also, Isom $(\mathbb{R}^n, g_0) = SO(n) \ltimes \mathbb{R}^n$, where $\mathbb{R}^n = SO(n) \ltimes \mathbb{R}^n / SO(n)$

Using similar methods, we can also derive the following equivalences:

$$
Isom(S^n, g_{can}) = O(n + 1)
$$

\n
$$
Isom_0(S^n, g_{can}) = SO(n + 1)
$$

\n
$$
Isom(H^2, g) = PSL(2, \mathbb{R}) \sqcup \sigma PSL(2, \mathbb{R}) \quad (\sigma(x, y) = (-x, y))
$$

\n
$$
Isom_0(H^2, g) = PSL(2, \mathbb{R})
$$

\n
$$
Isom(D^2, h) = PSU(1, 1) \sqcup \sigma PSU(1, 1)
$$

\n
$$
Isom_0(D^2, h) = PSU(1, 1)
$$

8.1 Space Forms

A space form is a connected complete Riemannian manifold with constant sectional curvature.

Theorem 8.2. Let (M, q) be a connected complete Riemannian manifold of dimension $n \geq 2$, with constant sectional curvature K.

Let (M, \tilde{g}) be the universal cover of (M, g) Then:

$$
(\widetilde{M}, \widetilde{g}) \text{ is isometric to } \begin{cases} (H^n, g) & \text{if } \kappa = -1, \\ (\mathbb{R}^n, g_0) & \text{if } \kappa = 0, \\ (S^n, g_{can}) & \text{if } \kappa = 1. \end{cases}
$$

This also implies that $K_{\lambda^2 g} = \frac{1}{\lambda^2} K_g$

Proposition 8.2. If M is a space form with $K > 0$, and $n := \dim M$ is even, then M is isometric to $Sⁿ$ or $P_n(\mathbb{R})$.

In particular, if M is orientable, then $M \cong S^n$.

Proof:

 $M = S^{2m}/\Gamma$ where Γ is a finite subgroup of $\text{Isom}(S^{2m}, g_{\text{can}}) = O(2m+1)$. We see that Γ acts freely on S^{2m} . Let $\phi \in \Gamma$.

The eigenvalues of Γ are then:

$$
\{e^{i\theta_1}, e^{-i\theta_1}, \dots, e^{i\theta_k}, e^{-i\theta_k}, 1, \dots, 1, -1, \dots, -1\}
$$

Where $\theta_i \in (0, \pi)$, and there are r 1's, s -1's, so that $2k + r + s = 2m + 1$ $(k, r, s \in \mathbb{Z}_{\geq 0})$

And det $(\phi) = (-1)^s$

Case 1: $r > 0$

 \exists a unit vector $\vec{x} \in S^{2m} \subset \mathbb{R}^{2m+1}$ such that $\phi(\vec{x}) = \vec{x} \implies \phi = id_{S^{2m}}$.

Therefore, Γ acts freely on S^{2m}

Case 2: $r = 0$

The eigenvalues of $\phi^2 \in \Gamma$ are:

$$
\{e^{2i\theta_1}, e^{-2i\theta_1}, \dots, e^{2i\theta_k}, e^{-2i\theta_k}, 1, \dots, 1\}
$$

where there are $2m + 1 - 2k$ 1's.

 $\phi^2 = id_{S^{2m}} \implies \phi = -id_{S^{2m}}$ because there are $2m+1$ eigenvalues of ϕ , and all the eigenvalues are -1. Raising $(-1)^{2m+1}$ shows that we must have $\phi = -id_{S^{2m}}$.

$$
\Gamma = \{I_{2m+1}\} \implies M = S^{2m} = S^n
$$

or

$$
\Gamma=\{\pm I_{2m+1}\}\implies M=S^{2m}/\{\pm I_{2m+1}\}=P_n(\mathbb{R})
$$

 \Box

8.2 Conformal Maps

Definition 8.3. Let V, W be finite dimensional inner product spaces. A linera map $L: V \to W$ is called conformal if it is a linear isomorphism and:

$$
\frac{\langle L(v_1), L(v_2) \rangle_W}{|L(v_1)|_W \cdot |L(v_2)|_W} = \frac{\langle v_1, v_2 \rangle}{|v_1|_W \cdot |v_2|_W} \quad \forall v_1, v_2 \in V - \{0\}
$$

So that L preserves unoriented angles.

Lemma 8.3. Let $L: V \to W$ be a linear isomorphism between finite dimensional inner product spaces. Then the following are equivalent:

- 1. L is conformal
- 2. $\exists \lambda > 0$ such that $|L(v)|_W = \lambda |v|_V \quad \forall v \in V$
- 3. $\exists \lambda > 0$ such that $\langle L(v_1), L(v_2) \rangle_W = \lambda^2 \langle v_1, v_2 \rangle_V \quad \forall v_1, v_2 \in V$

Definition 8.4. Let (M, q) and (N, h) be Riemannian manifolds. A C^{∞} map $f : M \to N$ is conformal if $\forall p \in M$, we have that $df_p: T_pM \to T_{f(p)}N$ is conformal.

⇐⇒

f is a local diffeomorphism and $f^*h = \lambda^2 g$ for some C^{∞} function $\lambda : M \to (0, \infty)$. The function λ^2 is called the conformal factor.

Note that a local isometry is simply a conformal map with $\lambda = 1$. We also have the following:

 $local$ isometry \implies conformal \implies local diffeomorphism.

Example 8.2. (Dilation)

 $f: \mathbb{R}^n \to \mathbb{R}^n$, where $f(\vec{x}) = \lambda \vec{x}$, where $\lambda > 0$.

Under this map, we see that $g_0 = dx_1^2 + \ldots + dx_n^2$, and $f^* dx_i = \lambda dx_i$ so that $f^* g_0 = \lambda^2 g_0$. We can also see that $\forall \vec{x} \in \mathbb{R}^n$, $\det(df_{\vec{x}}) = \lambda^n > 0$.

So f is an orientation preserving conformal map from (\mathbb{R}^n, g_0) to (\mathbb{R}^n, g_0)

Theorem 8.4. (Liouville)

Let $f: U \to \mathbb{R}^n$ be a conformal map, where U is connected, and $n \geq 3$.

Then this implies f is the restriction to U of a composition of isometries, dilation, or inversion, at most one of each.

Let G be the group generated by isometries, dilations, and inversions. Then

$$
G = PSL(2, \mathbb{C}) \sqcup \sigma PSL(2, \mathbb{C})
$$

Where $\sigma(z) = \overline{z}$ and $\sigma(x, y) = (x, -y)$.

Theorem 8.5. (do Carmo dC p. 175, Thm 5.3)

The isometries of H^n where $n \geq 2$ are restrictions to $H^n \subset \mathbb{R}^n$ of the conformal transformations of \mathbb{R}^n that take H^n onto itself.

9 Principal Bundles

9.1 Definitions & Examples

Definition 9.1. Let E, M, and F be smooth manifolds, with $\pi : E \to M$ a smooth map. We say that (π, E, M) is a C^{∞} fiber bundle with total space E and fiber F if:

(1): π is surjective

(2): $\forall x \in M$, there exists an open neighborhood $x \in U \subset M$ and a C^{∞} diffeomorphism ψ such that the following diagram commutes:

where Pr_1 is the projection onto the first factor. These maps ψ are called **local trivializations** of our fiber bundle.

For example, in the case when $E = M \times F$, with $\pi : E = M \times F \to M$ given by Pr_1 is the **product** fiber bundle with base M and fiber F .

Also, a fiber bundle is **trivial** if there exists a diffeomorphism $\Psi : E \to M \times F$ such that the following diagram commutes:

Remark:

For a fiber bundle (π, E, M) , there exists an open cover $\{U_{\alpha}\}_{{\alpha \in I}}$ of the base M and maps ψ_a that makes the diagram:

commute such that for $U_{\alpha} \cap U_{\beta} \neq \emptyset$, the map $\psi_{\alpha} \circ \psi_{\beta}^{-1} : (U_{\alpha} \cap U_{\beta}) \times F \to (U_{\alpha} \cap U_{\beta}) \times F$ is given by $(\psi_{\alpha} \circ \psi_{\beta}^{-1})(x,\xi) = (x, \phi_x(\xi))$ where $\phi_x : F \to F$ is a smooth diffeomorphism.

Example 9.1. A C^{∞} real (complex) vector bundle of rank r over M is a fiber bundle with fiber $\mathbb{R}^r(\mathbb{C}^r)$ such that $\phi_x : F \to F$ is an R-linear (C-linear) isomorphism. Note that this is much more restrictive! If we write $\psi_{\alpha} \circ \psi_{\beta}^{-1} : (U_{\alpha} \cap U_{\beta}) \times \mathbb{R}^r \to (U_{\alpha} \cap U_{\beta}) \times \mathbb{R}^r$ as $(x, v) \mapsto (x, \psi_{\alpha\beta}(v))$, we have that the smooth map $\psi_{\alpha\beta}: U_{\alpha}\cap U_{\beta}\to GL(r,\mathbb{R}),$ which is the same as saying $\phi_xv=Av$ for some $A\in GL(r,\mathbb{R}^r)$.

Definition 9.2. (Principal Bundle)

Let P and M be smooth manifolds, let G be a Lie group, and consider a smooth map $\pi : P \to M$. We say that (π, P, M, G) is a **principal fiber bundle** with total space P, base space M, and **structure group** G if:

- 1. G acts smoothly and freely on P on the right
- 2. $\pi: P \to M$ is the natural projection $P \to P/G$
- 3. $\forall x \in M$ there exists an open neighborhood $x \in U \subset M$ and smooth diffeomorphism $\psi : \pi^{-1}(U) \to$ $U \times G$ such that

commutes and $\psi(p \cdot g) = \psi(p) \cdot g$ for all $p \in \pi^{-1}(U)$ and all $g \in G$. Here, G acts on $U \times G$ on the right by $(x, u) \cdot g = (x, u \cdot g)$. These two conditions can be summarized by saying that we have G-equivariant local trivializations. We can also refer to this bundle $\pi : P \to M$ as simply a principal G-bundle.

Example 9.2. The **product** principal bundle is the case when $P = M \times G$, with $\pi : P = M \times G \rightarrow M$ given by Pr₁ and $(x, h) \cdot g = (x, hg)$, for all $x \in M$ and $g, h \in G$.

Example 9.3. A principal G-bundle is called **trivial** if there exists a C^{∞} diffeomorphism $\Psi: P \to M \times G$ such that $\Psi(p \cdot q) = \Psi(p) \cdot q \quad \forall p \in P, q \in G$ such that the following diagram commutes:

Example 9.4. Given $\pi : E \to M$ a real vector bundle of rank r, let us describe the frame bundle $GL(E)$ of E. This is:

$$
GL(E) = \{(x, (e_1, \ldots, e_r)) \mid x \in M, (e_1, \ldots, e_r) \text{ is an ordered } \mathbb{R}\text{-basis of } E_r\}
$$

Let $\pi: GL(E) \to M$ be the projection Pr_1 , and note that $GL(r, \mathbb{R})$ acts on $GL(E)$ on the right by:

$$
(x, (e_1, ..., e_r)) \cdot A = \left(x, \sum_{i=1}^n e_i A_{i1}, ..., \sum_{i=1}^n e_i A_{ir}\right)
$$

Where $A = (A_{ij}) \in GL(r, \mathbb{R})$, and $(x, (e_1, \ldots, e_r)) \in GL(E)$. Then in this case, we can see that once we convince ourselves that $GL(E)$ is a manifold, $GL(E)$ is a principal $GL(r, \mathbb{R})$ -bundle over M.

Additionally, if h is a metric on E, i.e., for all $x \in M$, $h(x)$ is an inner product on E_x , then h is a C^{∞} section of $E^* \otimes E^*$.

We can also consider:

$$
O(E, h) := \{(x, (e_1, \ldots, e_r)) \in GL(E) \mid (e_1, \ldots, e_r) \text{ is an ordered orthonormal basis of } (E_x, h(x))\}
$$

Which is $U(E, h)$ if we are working over $\mathbb C$ instead of $\mathbb R$.

So, $O(E, h) \to M$ is a principal $O(n)$ -bundle, and $U(E, h) \to M$ is a principal $U(n)$ -bundle.

Associate Bundles:

Given a principal G-bundle $\pi : P \to M$, and a smooth manifold F that admits a left-action, G acts freely on $P \times F$ by:

$$
(p, \xi) \cdot g = (p \cdot g, g^{-1} \cdot \xi)
$$
 for $p \in P, \xi \in F, g \in G$

Consider the space $P \times_G F := (P \times F)/G$ with the projection $P \times_G F \to M$ given by $[p,\xi] \mapsto \pi(p)$. Extending the local trivializations $U \times G$ of P to $U \times G \times F$, we see that the G action glues together $(x, h, \xi) \sim (x, 1, h^{-1}\xi)$, in which case, $P \times_G F \to M$ is a fiber bundle with fiber F known as the associate bundle of $\pi : P \to M$ with respect to F.

We can further generalize thie example. Given a principal G-bundle $\pi : P \to M$, and $\rho : G \to GL(n, \mathbb{R})$, a real representation of G, G acts on \mathbb{R}^n on the left by $g \cdot v = \rho(g)v$ for $v = [v_1, \ldots, v_n]^T$ a column vector.

We use the notation:

$$
P \times_{\rho} \mathbb{R}^n := P \times_G \mathbb{R}^n
$$
 with $g \cdot v = \rho(g)v$

Example 9.5. Take $\rho_0 : GL(r) \to GL(r)$ by $A \mapsto A$ the fundamental representation, and take its dual representation $\rho_0^*: GL(r) \to GL(r)$ given by $A \mapsto (A^{-1})^{\dagger}$. Then given $\pi: E \to M$ a vector bundle of rank r,

$$
GL(E)\times_{\rho_0^{\otimes s}\otimes(\rho_0^*)^{\otimes t}}\Bbb R^{r^{s+t}}\cong E^{\otimes s}\otimes (E^*)^{\otimes t}
$$

In particular, if M is a smooth manifold of dimension n , then:

$$
GL(TM)\times \mathbb{R}^{n^{r+s}}\cong TM^{\otimes r}\otimes (T^*M)^{\otimes s}=T^r_sM
$$

9.2 Cross Sections

Definition 9.3. A cross section of a fiber bundle $\pi : E \to M$ is a smooth map $\sigma : M \to E$ such that $\pi \circ \sigma = \text{id}_M$. This means that for all $x \in M$, $\sigma(x) \in E_x$.

Lemma 9.1. A principal G-bundle (π, P, M) is trivial if and only if it admits a cross section.

Proof:

If $\pi: E \to M$ is a trivial fiber bundle, then it admits a cross section $\sigma(x) = \Psi^{-1}(x, \xi)$ where $\Psi: E \to M \times F$ is the bundle isomorphism with the product bundle and $\xi \in F$ is chosen arbitrarily.

Conversely, if we let $\sigma : M \to P$ be a cross section, then we can define $\Phi : M \times G \to P$ by $\Phi(x, q) = \sigma(x) \cdot q$. Then Φ is a local diffeomorphism, and the diagram

commutes since:

$$
\pi(\Phi(x,g)) = \pi(\sigma(x) \cdot g) = \pi(\sigma(x)) = x = \Pr_1(x,g)
$$

Also, for all $x \in M$ and all $g, h \in G$, we have:

$$
\Phi((x,h)\cdot g) = \Phi(x,hg) = \sigma(x)(hg) = (\sigma(x)h)g = \Phi(x,h)\cdot g
$$

Which proves that (π, P, M) is the trivial G-bundle.

Lemma 9.2. $\sigma_{\beta}(x) = \sigma_{\alpha}(x) \cdot \psi_{\alpha\beta}(x) \forall x \in U_{\alpha} \cap U_{\beta}$

Proof:

$$
\sigma_{\beta}(x) = \psi_{\beta}^{-1}(x, e)
$$

= $\psi_{\alpha}^{-1} \circ \psi_{\alpha} \circ \psi_{\beta}^{-1}(x, e)$
= $\psi_{\alpha}^{-1}(x, \psi_{\alpha\beta}(x)(e))$
= $\psi_{\alpha}^{-1}(x, e) \cdot \psi_{\alpha\beta}(x)$
= $\sigma_{\alpha}(x) \cdot \psi_{\alpha\beta}(x)$

9.3 Connections on a Principal Bundle

Definition 9.4. Given $\pi : E \to M$ a fiber bundle with fiber $F, \forall x \in M$, let $i_x : E_x \hookrightarrow E$ be the inclusion map. The **vertical space** V_u at $u \in E$ is the image of the injective linear map

$$
(di_{\pi(u)})_u: T_u(E_{\pi(u)}) \to T_u E
$$

For dim $V_u = \dim F = N$, $\{V_u \mid u \in E\}$ is a C^{∞} distribution of N-planes, which is to say that $V = \coprod_u v_u$ is a C^{∞} sub-bundle of $TE \rightarrow E$ of rank N.

For example, if $\pi : E \to M$ is a vector bundle, then $V = \pi^*E$.

Lemma 9.3. Given $\pi : P \to M$ a principal G-bundle, $V \cong P \times \mathfrak{g}$, where $\mathfrak{g} = T_eG$ is the Lie algebra of G. **Definition 9.5.** Given $\xi \in \mathfrak{g}$, the **fundamental vector field** $X_{\xi}^{P} \in \mathfrak{X}(P) = C^{\infty}(P, TP)$ is defined by

$$
X_{\xi}^{P}(u) := \left. \frac{d}{dt} \right|_{t=0} u \cdot \exp(t\xi)
$$

Recall that $\exp(t\xi) = \gamma(t)$, where γ is the integral curve of the left-invariant vector field $X_{\xi}^{L} \in \mathfrak{X}(G)$ defined by $X_{\xi}^{L}(e) = \xi$, and $\gamma(0) = e$. Now, $t \mapsto u \cdot \exp(t\xi)$ is a smooth curve in the fiber $P_{\pi(u)}$ over $\pi(u)$, passing through u at $t = 0$, which implies that $X_{\xi}^{P}(u) \in V_u \subset T_u P$. Indeed, $X_{\xi}^{P} \in C^{\infty}(P, V)$ is in the space of C^{∞} sections of V.

Definition 9.6. Let $\pi : P \to M$ be a principal G-bundle, with dim $M = n$ and dim $G = N$. A **connection** on $\pi : P \to M$ is an assignment of a horizontal space $H_u \subset T_u P$ for each $u \in P$ such that $\{H_u \mid u \in P\}$ is a C^{∞} distribution of *n*-planes, i.e, H is a C^{∞} subbundle of rank *n* of TP, satisfying for all $u \in P$:

- 1. $T_u P = V_u \oplus H_u$
- 2. $H_{u \cdot a} = (dR_a)_u(H_u)$ for all $a \in G$, where $R_a : P \to P$ is the map $R_a(u) = u \cdot a$, which, as a smooth diffeomorphism, has derivative $(dR_a)_u : T_u P \to T_{u \cdot a} P$ given by a linear isomorphism.

Definition 9.7. A connection 1-form on a principal G-bundle $\pi : P \to M$ is a C^{∞} g-valued 1-form ω $(\omega \in \Omega^1(P, \mathfrak{g})$, which is to say that $\forall X \in \mathfrak{X}(P)$, $\omega(X)$ is a smooth map from P to \mathfrak{g}) such that:

1. $\forall \xi \in \mathfrak{g}, \omega(X_{\xi}^{P}) = \xi$

 \Box

2. $R_a^* \omega = \text{Ad}(a^{-1}) \omega \quad \forall a \in G \text{ where } (R_a^* \omega)(X) = \omega((R_a)_*(X)) \text{ as usual.}$

We want to show that these two definitions [9.6](#page-58-1) and [9.7](#page-58-2) are equivalent.

 (\implies)

We know that by definition, $TP = V \oplus H$, so we have a projection $V \oplus H \to V$ which will define for us a smooth section ω' of:

$$
T^*P \otimes V \cong T^*P \otimes (P \times \mathfrak{g})
$$

Since the projection $V \oplus H \to V$ is exactly the map $TP \to P \times \mathfrak{g}$, this g-valued 1-form is defined by $(p, v) \mapsto (p, \omega'(v))$, and under the isomorphism $C^{\infty}(P, T^*P \otimes V) \cong \Omega^1(P, \mathfrak{g})$, we have that $\omega' \mapsto \omega$. Our goal is to prove that this ω is a connection 1-form.

 $\textbf{Lemma 9.4. } \left((R_a)_*X^P_\xi\right)(u)=X^P_{\text{Ad}(a^{-1})\xi}(u) \quad \forall a\in G, \quad \forall \xi\in \mathfrak{g}$

Proof:

$$
\left((R_a)_* X_\xi^P\right)(u) = (dR_a)_{u \cdot a^{-1}} \left(X_\xi^P(u \cdot a^{-1})\right)
$$

$$
= (dR_a)_{u \cdot a^{-1}} \left(\frac{d}{dt}\Big|_{t=0} u \cdot a^{-1} \exp(t\xi)\right)
$$

$$
= \frac{d}{dt}\Big|_{t=0} u \cdot a^{-1} \exp(t\xi)a
$$

$$
= \frac{d}{dt}\Big|_{t=0} u \exp(t \operatorname{Ad}(a^{-1})\xi)
$$

$$
= X_{\operatorname{Ad}(a^{-1})\xi}^P(u)
$$

Now, $\omega'(X_{\xi}^P) = X_{\xi}^P$ when ω' is considered as a projection, therefore $\omega(X_{\xi}^P) : P \to P \times \mathfrak{g}$ by $u \mapsto (u, \xi)$, which proves the first statement in Definition [9.7.](#page-58-2)

To prove the second part, it suffices to show that:

- (1) $X \in \mathfrak{X}(P)$ such that $X(u) \in H_u$ $\forall u \in P$ implies $\omega((R_a)_*X) = \text{Ad}(a^{-1})\omega(X)$
- (2) $\forall \xi \in \mathfrak{g}, \, \omega((R_a)_*X^P_\xi) = \mathrm{Ad}(a^{-1})\omega(X^P_\xi)$

To prove (1), notice that both sides are just $0 \in \mathfrak{g}$, since $((R_a)_*X)(u) = (dR_a)_{u \cdot a^{-1}}(X(u \cdot a^{-1})) \in H_u$, because $X(u \cdot a^{-1}) \in H_{u \cdot a^{-1}}$, which implies $\omega((R_a)_*X) = 0$ if and only if $\omega(X) = 0$. For (2), we use $\omega(X_{\xi}^P) = \xi$ to show:

$$
\omega((R_a)_* X_{\xi}^P) = \omega(X_{\text{Ad}(a^{-1})\xi}^P)
$$

=
$$
\text{Ad}(a^{-1})\xi
$$

=
$$
\text{Ad}(a^{-1})\omega(X_{\xi}^P)
$$

 (\iff)

Given $\omega \in \Omega^1(P, \mathfrak{g})$ satisfying the two conditions in Definition [9.7,](#page-58-2) $\forall u \in P$, $\omega(u) : T_u P \to \mathfrak{g}$. Define $H_u := \ker(\omega(u))$. Then the first condition of Definition [9.7](#page-58-2) implies that $\omega(u)|_{V_u} : V_u \to \mathfrak{g}$ is a linear isomorphism, hence $T_u P = V_u \oplus H_u$, which gives condition 1 of Definition [9.6.](#page-58-1) To prove the second condition of Definition [9.6](#page-58-1) from the second condition of Definition [9.7:](#page-58-2)

$$
\omega(u\cdot a)(dR_a)_u=(R_a^*\omega)(u)=\mathrm{Ad}(a^{-1})\omega(u)
$$

Which is the commutativity of:

Since $v \in \text{ker}(\omega(u))$ if and only if $(dR_a)_u(v) \in \text{ker}(\omega(u \cdot a))$, we have that $(dR_a)_u(H_u) = H_{u \cdot a}$ as desired, which proves the equivalence of our definition of a connection on a principal bundle using horizontal spaces with the definition of using a connection 1-form.

Note: This connection 1 form ω is global.

Now, fix a principal G-bundle $\pi : P \to M$, and an open cover $\{U_\alpha\}_{\alpha \in I}$ of M together with local trivializations $\psi_{\alpha} : \pi^{-1}(U_{\alpha}) \to U_{\alpha} \times G$ with local cross sections $\sigma_{\alpha} : U_{\alpha} \to \pi^{-1}(U_{\alpha})$ given by $\sigma_{\alpha}(x) = \psi_{\alpha}^{-1}(x, e)$. We want to consider all possible connection 1-forms $\omega \in \Omega^1(P, \mathfrak{g})$ satisfying definition [9.7.](#page-58-2) Let $\theta \in \Omega^1(G, \mathfrak{g})$ be the unique left-invariant $\mathfrak g$ -valued 1-form on G such that:

$$
\theta(e) = \text{id} : T_e G \to T_e G = \mathfrak{g} \quad \text{ and } \quad \theta(g) = \left(dL_{g^{-1}} \right)_g : T_g G \to T_e G = \mathfrak{g}
$$

Example: For $G = GL(r, \mathbb{R}) \subset \mathbb{R}^{r^2}$ open, $A = (a_{ij}), dA = (da_{ij}), \theta = A^{-1}dA$

Note: For a general Lie group G, we may write $\theta = g^{-1} dg$. This θ is the unique g-valued 1-form on G such that $\theta(X_{\xi}^{L}) = \xi \quad \forall \xi \in \mathfrak{g}$. In fact, $X_{\xi}^{L} = X_{\xi}^{G}$ if we view G as the total space of a principal G-bundle over a point. Moreover, $\forall a \in G$, we have:

$$
R_a^* \theta = R_a^* L_{a^{-1}}^* \theta = \text{Ad}(a^{-1})\theta
$$

Given any connection 1-form $\omega \in \Omega^1(P, \mathfrak{g})$ satisfying definition [9.7,](#page-58-2) define:

$$
\omega_\alpha:=\sigma_\alpha^*\omega\in\Omega^1(U_\alpha,\mathfrak{g})
$$

the pullback along the cross section $\sigma_{\alpha}: U_{\alpha} \to \pi^{-1}(U_{\alpha})$. For the inverse $\psi_{\alpha}^{-1}: U_{\alpha} \times G \to \pi^{-1}(U_{\alpha})$ of our local trivialization, consider the pullback:

$$
\left(\psi_\alpha^{-1}\right)^*\omega\in\Omega^1(U_\alpha\times G,\mathfrak{g})
$$

which for the choice of some $x \in U_\alpha$ and $g \in G$ gives a map:

$$
\left((\psi_\alpha^{-1})^*\omega\right)(x,g):T_{(x,g)}(U_\alpha\times G)\to\mathfrak{g}
$$

Note that for this product space, we have $T_{(x,g)}(U_\alpha \times G) = T_x U_\alpha \oplus T_g G$, Notice that as maps $T_xU_\alpha \oplus T_gG \to \mathfrak{g}$, we have:

$$
\left((\psi_\alpha^{-1})^*\omega\right)(x,g) = \left(\mathrm{Ad}(g^{-1})\cdot\omega_\alpha(x)\right)\oplus\theta(g)
$$

Lemma 9.5. On $U_{\alpha} \cap U_{\beta}$, as elements of $\Omega^1(U_{\alpha} \cap U_{\beta}, \mathfrak{g})$, we have:

$$
\omega_{\beta} = \mathrm{Ad}\left(\psi_{\alpha\beta}^{-1}\right)\omega_{\alpha} + \psi_{\alpha\beta}^{*}\theta
$$

Proof:

Recall the definitions of ψ_{α} and $\psi_{\alpha\beta}: U_{\alpha} \cap U_{\beta} \to G$. We use Lemma [9.4](#page-59-0) to conclude:

$$
\omega_{\beta} = \sigma_{\beta}^{*} \omega
$$
\n
$$
= \sigma_{\beta}^{*} \psi_{\alpha}^{*} (\psi_{\alpha}^{-1})^{*} \omega
$$
\n
$$
= \sigma_{\beta}^{*} \psi_{\alpha}^{*} \left(\text{Ad}(g^{-1}) \omega_{\alpha} + \theta \right)
$$
\n
$$
= (\psi_{\alpha} \circ \sigma_{\beta})^{*} \left(\text{Ad}(g^{-1} \omega_{\alpha} + \theta) \right)
$$

So that as a map, $\psi_{\alpha} \circ \sigma_{\beta} : U_{\alpha} \cap U_{\beta} \to (U_{\alpha} \cap U_{\beta}) \times G$ we have $(\psi_{\alpha} \circ \sigma_{\beta})(x) = \psi_{\alpha} \circ \psi_{\beta}^{-1}(x, e) = (x, \psi_{\alpha\beta}(x))$ So that:

$$
(\psi_{\alpha} \circ \sigma_{\beta})^* \left(\mathrm{Ad}(g^{-1}) \omega_{\alpha} + \theta \right) = \mathrm{Ad}(\psi_{\alpha\beta}^{-1}) \omega_{\alpha} + \psi_{\alpha\beta}^* \theta
$$

as desired.

9.4 Connections on an Associated Vector Bundle

Give $a \pi : P \to M$ a principal $GL(r, \mathbb{F})$ -bundle, take $\rho_0 : GL(r, \mathbb{F}) \to GL(r, \mathbb{F})$ the fundamental representation. We saw that $E = P \times_{\rho_0} \mathbb{F}^r$ is a smooth vector bundle of rank r, and that $GL(E) = P$. Let $\sigma_{\alpha}(x) = (e_{\alpha 1}(x), \ldots, e_{\alpha r}(x))$ be a local frame of E, which we can do since

$$
\sigma_{\alpha}: U_{\alpha} \to P|_{U_{\alpha}} = GL(E)|_{U_{\alpha}}
$$

Now, each $e_{\alpha,i}: U_{\alpha}\to E_{U_{\alpha}}$ is a smooth section of $E|_{U_{\alpha}}$, and each $(e_{\alpha 1}(x),...,e_{\alpha r}(x))$ is a basis of E_x . Given a connection on P , we define ∇ on E as follows:

$$
\nabla : \Omega^0(M, E) \to \Omega^1(M, E)
$$

is an F-linear map sending $S \mapsto \nabla S$, such that

$$
\nabla(fS) = df \otimes S + f \nabla S
$$

For all $f \in C^{\infty}(M)$ and $S \in \Omega^{0}(M,E)$. Writing $\omega_{\alpha} = \sigma_{\alpha}^{*}\omega = (\theta_{ij})_{i,j=1}^{r}$, for $\theta_{ij} \in \Omega^{1}(U_{\alpha})$ as above. On $E|_{U_{\alpha}}$ define $\nabla e_{\alpha,i} = \sum$ j $e_{\alpha,j}\otimes\theta_{ji}$ which is to say:

$$
\begin{bmatrix} \nabla_{e_{\alpha_1}} & \cdots & \nabla_{e_{\alpha_r}} \end{bmatrix} = \begin{bmatrix} e_{\alpha_1} & \cdots & e_{\alpha_r} \end{bmatrix} \begin{bmatrix} \theta_1^1 & \cdots & \theta_r^1 \\ \vdots & \ddots & \vdots \\ \theta_1^r & \cdots & \theta_r^r \end{bmatrix}
$$

As helpful notation, we will write the above as:

 \Box

$$
\nabla\sigma_\alpha=\sigma_\alpha\omega_\alpha
$$

We have also seen that:

$$
\omega_{\beta} = \sigma_{\alpha} \psi_{\alpha\beta}
$$

a shorthand of:

$$
\begin{bmatrix} e_{\beta_1} & \cdots & e_{\beta_r} \end{bmatrix} = \begin{bmatrix} e_{\alpha_1} & \cdots & e_{\alpha_r} \end{bmatrix} \begin{bmatrix} a_{11} & \cdots & a_{1r} \\ \vdots & \ddots & \vdots \\ a_{r1} & \cdots & a_{rr} \end{bmatrix}
$$

So:

$$
\nabla \sigma_{\beta} = (\nabla \sigma_{\alpha}) \psi_{\alpha\beta} + \sigma_{\alpha} d\psi_{\alpha\beta}
$$

= $\sigma_{\alpha} (\omega_{\alpha} \psi_{\alpha\beta} + d\psi_{\alpha\beta})$
= $\sigma_{\beta} (\psi_{\alpha\beta}^{-1} \omega_{\alpha} \psi_{\alpha\beta} + \psi_{\alpha\beta}^{-1} d\psi_{\alpha\beta})$
= $\sigma_{\beta} \omega_{\beta}$

Which checks that the formula transforms correctly.

Given $s \in C^{\infty}(M, E)$, on U_{α} we can write s locally as $s = \sum_{i=1}^{r} s_{\alpha i} e_{\alpha i}$, or:

$$
s = \begin{bmatrix} e_{\alpha 1} & \cdots & e_{\alpha r} \end{bmatrix} \begin{bmatrix} s_{\alpha 1} \\ \vdots \\ s_{\alpha r} \end{bmatrix}
$$

And use the notation to collapse this to $s=\sigma_\alpha s_\alpha$ Then, for $\nabla s \in \Omega^1(M, E)$ on U_α , it takes the form:

$$
\nabla s = \nabla(\sigma_{\alpha}s_{\alpha})
$$

= $(\nabla\sigma_{\alpha})s_{\alpha} + \sigma_{\alpha}ds_{\alpha}$
= $\sigma_{\alpha}\omega_{\alpha}s_{\alpha} + \sigma_{\alpha}ds_{\alpha}$
= $\sigma_{\alpha}(\omega_{\alpha}s_{\alpha} + ds_{\alpha})$

Which allows us to conclude that $(\nabla s)_\alpha = \omega_\alpha s_\alpha + d s_\alpha$

$$
\begin{bmatrix} \beta_1 \\ \vdots \\ \beta_r \end{bmatrix} = \begin{bmatrix} d(s_1) \\ \vdots \\ d(s_r) \end{bmatrix} + \begin{bmatrix} \theta_1^1 & \cdots & \theta_r^1 \\ \vdots & \ddots & \vdots \\ \theta_1^r & \cdots & \theta_r^r \end{bmatrix} \begin{bmatrix} s_1 \\ \vdots \\ s_r \end{bmatrix}
$$

In general, given a principal G-bundle $\pi : P \to M$ and a representation $\rho : G \to GL(m, \mathbb{F})$, let $E = P \times_{\rho} \mathbb{F}$ be the associated vector bundle of rank m . With our usual notation for transition functions of P , the transition functions of E are given by:

$$
(U_{\alpha} \cap U_{\beta}) \times \mathbb{F}^{m} \to (U_{\alpha} \cap U_{\beta}) \times \mathbb{F}^{m}
$$

$$
(x, v) \mapsto (x, \rho(\varphi_{\alpha\beta}(x))v)
$$

Let $\omega_{\alpha} \in \Omega^1(U_{\alpha}, \mathfrak{g})$ be defined by a connection on P so that $\omega_{\beta} = \text{Ad}(\psi_{\alpha\beta}^{-1})\omega_{\alpha} + \psi_{\alpha\beta}^* \theta$. Consider the corresponding Lie algebra representation:

$$
(d\rho)_e : \mathfrak{g} \to \mathfrak{gl}(m,\mathbb{F})
$$

and define

$$
\omega_\alpha^\rho := (d\rho_e)\omega_\alpha \in \Omega^1(U_\alpha,\mathfrak{gl}(m,\mathbb{F}))
$$

Then we know that this satisfies:

$$
\omega_{\beta}^{\rho} = (\rho \circ \phi_{\alpha\beta})^{-1} \omega_{\alpha} (\rho \circ \psi_{\alpha\beta}) + (\rho \circ \psi_{\alpha\beta})^{-1} d(\rho \circ \psi_{\alpha\beta})
$$

So, $\{\omega_{\alpha}^{\rho} \mid \alpha \in I\}$ defines a connection $\nabla : \Omega^0(M, E) \to \Omega^1(M, E)$ on the vector bundle.

9.5 Horizontal Lifts

Given $\pi : P \to M$ a principal G-bundle with connection $\Gamma = \{H_u \subset T_u P \mid u \in P\}$, recall that the map $d\pi_u|_{H_u}: H_u \to T_{\pi(u)}M$ is a linear isomorphism.

Definition 9.8. Given $X \in \mathfrak{X}(M)$, the **horizontal lift** $X^* \in \mathfrak{X}(P)$ of X is defined as follows.

$$
\forall u \in P, X^*(u) \in H_u \quad \text{and} \quad d\pi_u(X^*(u)) = X(\pi(u))
$$

Indeed, the resulting vector field on P is horizontal, so we write $X^* \in C^\infty(P, H)$. Note that $(R_a X)_* X^* = X^*$ for all $a \in G$, since $(dR_a)_u(X^*(u)) = X^*(u \cdot a)$ which comes from the fact that $(dR_a)_u(H_u) = H_{u \cdot a}$. We have an injective R-linear map

$$
\mathfrak{X}(M) \to C^\infty(P, H)
$$

by $X \mapsto X^*$. The image of this map is:

$$
\{\tilde{X} \in C^{\infty}(P, H) \mid (R_a)_* \tilde{X} = \tilde{X} \quad \forall a \in G\}
$$

Given any such \tilde{X} , define $X(x) = (d\pi_u)(\tilde{X}(u))$ for any $u \in \pi^{-1}(x)$. Then $\tilde{X} = X^*$

Note also that for any $\tilde{X} \in \mathfrak{X}(P)$, there exist unique components $\tilde{X}^V \in C^{\infty}(P, V)$ and $\tilde{X}^H \in C^{\infty}(P, H)$ such that $\tilde{X} = \tilde{X}^V + \tilde{X}^H$.

Lemma 9.6. Given $X, Y \in \mathfrak{X}(M)$ and $f \in C^{\infty}(M)$, we have:

1. $(X + Y)^* = X^* + Y^*$ 2. $(fX)^* = (f \circ \pi)X^*$

3.
$$
[X, Y]^* = [X^*, Y^*]^H
$$

Now, let $\pi : P \to M$ be a principal G-bundle with connection $\Gamma = \{H_u \subset T_u P \mid u \in P\}$, and consider a smooth curve $\alpha : [a, b] \to M$.

Definition 9.9. A horizontal lift of α is a smooth curve $\tilde{\alpha} : [a, b] \rightarrow P$ such that $\pi \circ \tilde{\alpha} = \alpha$ and $\tilde{\alpha}'(t) \in H_{\alpha(t)} \quad \forall t \in [a, b]$

9.6 Parallel Transport

Let $\pi : P \to M$ be a principal G-bundle with connection $\Gamma = \{H_u \subset T_u P \mid u \in P\}$, and let $\gamma : [a, b] \to M$ be a piecewise smooth curve. The **parallel transport along** γ is the map:

$$
Hol(\gamma) : \pi^{-1}(\gamma(a)) \to \pi^{-1}(\gamma(b))
$$

sending $u \mapsto \tilde{\gamma}(b)$ where $\tilde{\gamma}$ is the unique horizontal lift of γ , satisfying $\gamma(a) = u$.

Here are some properties of this parallel transport definition:

- 1. Reparametrizing $\phi : [c, d] \to [a, b], \phi' \ge 0$ implies $\text{Hol}(\gamma) = \text{Hol}(\gamma \circ \phi)$
- 2. Hol $(\gamma_2 \cdot \gamma_1) = Hol(\gamma_2) \circ Hol(\gamma_1)$
- 3. γ constant implies Hol(γ) = Id : $\pi^{-1}(\gamma(a)) \to \pi^{-1}(\gamma(a))$
- 4. Hol $(\gamma^{-1}) = (Hol(\gamma))^{-1} : \pi^{-1}(\gamma(b)) \to \pi^{-1}(\gamma(a))$
- 5. $\forall u \in \pi^{-1}(\gamma(a))$ and $\forall g \in G$, $\text{Hol}(\gamma)(u \cdot g) = (\text{Hol}(\gamma)(u)) \cdot g$

Definition 9.10. Given M_1 , M_2 smooth manifolds both admitting right actions by a Lie group G , a smooth map $f: M_1 \to M_2$ is G-equivariant if $f(x \cdot g) = f(x) \cdot g \,\forall x \in M, \forall g \in G$.

Therefore, property 5 above states that $Hol(\gamma)$ is always a G-equivariant map between fibers.

Definition 9.11. Let $\pi : P \to M$ be a principal G-bundle with connection $\Gamma = \{H_u \subset T_uP \mid u \in P\}$. For a fixed $x \in M$, the set of piecewise smooth curves $\gamma : [0,1] \to M$ satisfying $\gamma(0) = \gamma(1) = x$ is called the **loop** space $\Omega(M, x)$ based at $x \in M$.

If we consider the connected component

$$
\Omega^{0}(M, x) = \{ \gamma \in \Omega(M, x) \mid \gamma \sim \gamma_{0} \}
$$

of the loop space based at x consisting of curves homotopic to the constant curve $\gamma_0 : [0,1] \to M$ sending $t \mapsto x$ for all $t \in [0,1]$. Let $\pi_1(M,x)$ denote the quotient $\Omega(M,x)/\Omega^0(M,x)$. Now, for all $\gamma \in \Omega(M,x)$, $\text{Hol}(\gamma) : \pi^{-1}(x) \to \pi^{-1}(x).$

Definition 9.12. The collection

$$
\Phi(x) = \{ \text{Hol}(\gamma) \mid \gamma \in \Omega(M, x) \}
$$

forms a group known as the **holonomy group of** Γ with reference point x. We also can define the restricted holonomy group:

$$
\Phi^0(x) = \{ \text{Hol}(\gamma) \mid \gamma \in \Omega^0(M, x) \}
$$

Now, pick a point $u \in \pi^{-1}(x)$, and define $\phi_u : \Omega(M, x) \to G$ by:

$$
Hol(\gamma)(u) = u \cdot \phi_u(\gamma)
$$

Which we can do because G acts transitively on the fibers of a principal G -bundle.

References

- [Bo] William M. Boothby, An Introduction to Differential Manifolds and Riemannian Geometry, revised second edition.
- [dC] Manfredo Perdigao do Carmo, Riemannian Geometry.
- [GHL] Sylvester Gallot, Dominique Hulin, and Jacques Lafontaine, Riemannian Geometry, third edition.
- [Mi] John Milnor, "Curvatures of left invariant metrics on Lie groups," Advances in Math. 21 (1976), no. 3, 293–329.